Un nuovo kg

Venerdì 16 novembre è stata adottata una nuova definizione dell’unità di massa a livello internazionale: il kg.

Fino a ieri il kg era definito come la massa di un cilindro di una lega di platino e iridio conservata sotto tre campane di vetro presso il Bureau International des Poids e Measures a Parigi. Una definizione che creava qualche problema dal momento che il cilindro è, per quanto protetto, soggetto a usura e all’accumulo di polveri estranee.

Da ieri il kg è definito in termini di una costante universale: la costante di Planck. Si è deciso che la costante di Planck vale 6,626 070 15 ×10-34 kg m2 s-1. Essendo la costante definita in questo modo, come la velocità della luce non ha errore. Il kg dunque è la massa per la quale la costante di Planck assume il valore che le è stato dato.

Una volta definita l’unità di misura si deve però anche spiegare come si ottiene un campione di tale unità, la cosiddetta mise en pratique. Per il kg la mise en pratique consiste in un’accurata operazione di misura del peso (che non è la massa, ma è a essa legata attraverso la relazione secondo la quale il peso di un oggetto di massa m è dato dal valore di tale massa moltiplicata per l’accelerazione di gravità). Per eseguire questa misura di precisione si usa una bilancia di Kibble. La bilancia, idealmente, funziona nel modo seguente. Su un piatto si mette la massa da misurare. Per effetto del peso il piatto subisce una forza d’intensità mg. Sull’altro si trova, disposto in modo da giacere sul piano orizzontale, una bobina di filo conduttore di lunghezza ℓ che è posta in un campo magnetico radiale B. Se si fa circolare una corrente I nella bobina, questa subisce una forza diretta verticalmente di modulo BIℓ. Se la forza dovuta all’interazione tra campo magnetico e filo è verticale e con verso opposto a quella di gravità si ha che

mg = BIℓ

da cui si ricava m. In alternativa si può misurare la fem che si misura ai capi della stessa bobina quando questa si muove verticalmente con velocità v nello stesso campo magnetico B. In questo caso la Legge di Faraday-Neumann prevede che la fem sia uguale alla variazione di flusso del campo magnetico che attraversa la bobina. Idealizzando la bobina come una spira circolare, cadendo questa descrive un cilindro la cui superficie laterale è l’unica attraversata (perpendicolarmente) dal campo magnetico. Il flusso del campo è dunque

Φ = BS = Bℓh = Bℓvt

Di conseguenza la sua variazione nell’unità di tempo vale

V = ΔΦ/Δt = Bℓv

da cui si ricava che il prodotto Bℓ vale V/v, con V che è uguale alla tensione che si misura ai capi della bobina mentre si muove. Possiamo cosé eliminare il prodotto Bℓ alla prima relazione e ottenere

mgv = IV

Nella pratica la misura di I e di V è effettuata attraverso dispositivi quantistici (a effetto Josephson) che permettono misure molto accurate perché i valori di corrente e di tensione che si misurano sono quantizzati. Resta il problema di determinare con precisione g e v. Queste misure sono affidate a interferometri laser che misurano lo spostarsi delle frange d’interferenza prodotta dalla luce riflessa da uno specchio montato sulla bobina o su un dispositivo lasciato cadere per misurare con precisione l’accelerazione di gravità (gravitometro).

Annunci

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...