L’esame di Stato 2019 per i Licei Scientifici

In questo post commento due documenti ufficiali del MIUR, che illustrano i caratteri della prova d’esame per i Licei Scientifici. Si tratta di commenti scaturiti da un mio recente intervento in un incontro con gli insegnanti del PLS di Matematica di Sapienza, nel corso del quale ho commentato le prove date come simulazione dell’esame di Stato. La soluzione delle prove da me proposta è stata pubblicata su Patreon, da dove potete scaricarla.

Il primo documento commentato è lo scheda di regolamento recante le indicazioni nazionali riguardanti gli obiettivi specifici di apprendimento. Meglio noto come “indicazioni nazionali”. In particolare le indicazioni per i licei scientifici sono contenute nell’Allegato F del documento.

Nel documento si dice esplicitamente che “lo studente avrà acquisito le seguenti competenze: osservare e identificare fenomeni; formulare ipotesi esplicative utilizzando modelli, analogie e leggi; formalizzare un problema di fisica e applicare gli strumenti matematici e disciplinari rilevanti per la sua risoluzione; fare esperienza e rendere ragione del significato dei vari aspetti del metodo sperimentale, dove l’esperimento e’ inteso come interrogazione ragionata dei fenomeni naturali, scelta delle variabili significative, raccolta e analisi critica dei dati e dell’affidabilità di un processo di misura, costruzione e/o validazione di modelli”

Questo significa che lo studente deve aver imparato a lavorare con i dati sperimentali. Deve quindi almeno essere in grado di estrarre informazioni da grafici e tabelle o altro genere di dati. Non è particolarmente importante che sia capace di condurre un esperimento in prima persona. Questo giustifica la tipologia di almeno uno dei problemi della prova proposta come simulazione. 

Una tale necessità è ben nota da anni e se gli studenti non sono preparati è perché, per molte ragioni, alcune delle quali sicuramente comprensibili, il modo di fare didattica in fisica non è cambiato. È indispensabile cambiare rotta. Il lavoro di analisi dei dati dev’essere preso in seria considerazione e il Dipartimento di Fisica è pronto a fornire la necessaria assistenza.

“La libertà, la competenza e la sensibilità dell’insegnante – che valuterà di volta in volta il percorso didattico piú adeguato alla singola classe – svolgeranno un ruolo fondamentale nel trovare un raccordo con altri insegnamenti” significa che non c’è alcun bisogno di puntare troppo sul formalismo. Le prove proposte non richiedono particolari abilità formali in fisica. Richiedono piuttosto la comprensione del significato delle equazioni (parliamo della prova di fisica: per quella di matematica e fisica l’abilità richiesta è quella richiesta dalle indicazioni di matematica).

Le indicazioni non richiedono esplicitamente un intenso programma di lavoro in laboratorio: richiedono piuttosto “di esplorare fenomeni (sviluppare abilità relative alla misura) e di descriverli con un linguaggio adeguato (incertezze, cifre significative, grafici)”. Il biennio va sfruttato per abituare gli studenti a questo lavoro. Si può approfittare di questo per introdurre alcuni semplici argomenti, ma il focus dev’essere sulla pratica del laboratorio (più intesa nel senso della capacità di analizzare i dati che di fare l’esperimento). Tutta la calorimetria e la cinematica, per esempio, si possono facilmente anticipare in questo periodo, così come l’ottica geometrica.

Segue una serie di argomenti piuttosto esplicito e chiaro: oltre agli argomenti già citati, si parla dei passaggi di stato (che significa che si deve comprendere il concetto di calore latente). Per la dinamica la II Legge di Newton è il punto centrale, insieme al concetto di energia e lavoro che ritornano in tutta la durata del corso di studi.

Nel secondo biennio la capacità di trattare con i dati sperimentali s’intende acquisita e quindi si può passare a una trattazione più formale degli argomenti, senza però mai dimenticare che tutti i risultati che si conseguono sono comunque il frutto dell’analisi sperimentale. Gli esperimenti che permettono di formulare le leggi, dunque, vanno accuratamente descritti, quanto meno.

Allo studente si chiede quindi di conoscere l’equazione di stato dei gas e la teoria cinetica. Il primo e il secondo principio della termodinamica si danno anche per acquisiti. Di conseguenza lo studente dovrebbe saper calcolare le grandezze rilevanti nelle trasformazioni di un sistema termodinamico: calore, lavoro, energia interna, entropia.

Delle onde occorre conoscere i fenomeni della sovrapposizione, interferenza e diffrazione. Si parla di sorgenti coerenti, quindi trattiamo sempre casi molto semplici per i quali il formalismo può essere reso molto semplice. Si chiede anche che lo studente sappia declinare i risultati relativamente a onde sonore e a onde elettromagnetiche (in sostanza deve conoscere la differenza di comportamento tra queste).

Lo studente deve quindi conoscere l’elettrostatica e la gravitazione: nel primo caso ci si aspetta che sappia come sono fatti i campi prodotti da distribuzioni particolari di carica attraverso il Teorema di Gauss; nel secondo che conosca le Leggi di Keplero. Il concetto di energia e di potenziale ricorre in questo settore. È importante mettere sempre in relazione queste conoscenze con quelle acquisite in precedenza.

Dei fenomeni elettromagnetici quelli rilevanti sono la Forza di Lorentz e l’induzione elettromagnetica, il Teorema di Gauss e il Teorema di Ampère (il primo peraltro non riguarda solo l’elettromagnetismo). Essendo sempre importante trattare aspetti energetici si deve trattare la densità d’energia del campo elettrico e del campo magnetico e introdurre le onde e.m., anche solamente a livello qualitativo.

Per quanto riguarda la relatività il campo è ristretto alla conoscenza dei fenomeni della simultaneità tra gli eventi, la contrazione delle lunghezze e la dilatazione dei tempi, nonché della relazione tra massa ed energia. Di fatto basta la conoscenza delle trasformazioni di Lorentz.

Per la meccanica quantistica occorre aver compreso il dualismo onda-corpuscolo e conoscere l’effetto fotoelettrico, nonché saper spiegare gli spettri di emissione e assorbimento alla luce della teoria dell’atomo di Bohr. Completa la conoscenza della materia la relazione di de Broglie che lega quantità di moto e lunghezza d’onda.

È vero che il quadro di riferimento presenta alcune importanti discrepanze da quanto evidenziato sopra. La buona notizia è che l’elenco degli argomenti su cui può vertere la prova non è troppo lungo ed è abbastanza comune. A parte i punti in cui si dice che lo studente deve saper lavorare con i dati sperimentali, per i quali vale quanto detto sopra.

Effettivamente si possono esprimere perplessità circa la presenza dei corpi rigidi, che non sono certo tra i più semplici da trattare, né tra gli argomenti più amati. Anche la presenza dello spettro di corpo nero tra questi argomenti non è molto coerente con le indicazioni nazionali. 

La mia interpretazione è che il cenno ai corpi rigidi è presente perché all’ultimo punto dei quadri di riferimento per la fisica è citato il momento delle forze magnetiche agenti su una spira. È evidente che se si vuole trattare questo caso il concetto di momento di una forza occorre introdurlo. Non ritengo che ci possano (debbano) essere veri problemi sui corpi rigidi in un compito d’esame. 

Per quanto riguarda il cenno al corpo nero, invece, va detto che nelle indicazioni nazionali è citato, sebbene sembrerebbe non fondamentale (non lo è, in effetti). La trattazione teorica dello spettro di corpo nero è particolarmente complessa e non adatta a essere discussa in dettaglio in un liceo: di conseguenza non si vede come si possano formulare problemi che vadano al di là di qualcosa con un taglio che  però dovrebbe rientrare nella tipologia di problemi di carattere sperimentale. Da questo punto di vista dovrebbe essere sufficiente conoscere il problema del corpo nero a livello molto qualitativo per cui si possono immaginare problemi per i quali basta estrarre dati da un grafico o da tabelle, senza conoscere troppo a fondo il formalismo di questo fenomeno.

Come sempre, quanto sopra è una mia interpretazione naturalmente possono sempre essere smentito dai fatti. Ritengo però che, al di là di qualche critica che certamente si può avanzare nei confronti delle prove proposte come simulazione, tali prove siano sostanzialmente equilibrate. Le simulazioni servono anche a sondare l’umore degli insegnanti e a calibrare meglio la prova d’esame. Va sempre ricordato che le prove sono preparate a cura di colleghi della Scuola, che quindi dovrebbero rendersi conto delle capacità degli studenti di un liceo e dovrebbero essere in grado di calibrare la prova in gradi di difficoltà differenti.

Va anche ricordato che non ci si aspetta che tutti gli studenti siano in grado di portare a termine l’intera prova (un problema e quattro quesiti a scelta tra due problemi e otto quesiti). Le valutazioni dovrebbero andare da un minimo che corrisponde all’individuazione qualitativa delle principali leggi fisiche che governano i fenomeni descritti nei quesiti al massimo che corrisponde a una soluzione formalmente e numericamente corretta di tutte le prove.

Annunci

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...