Per un nuovo modo d’insegnare la meccanica quantistica

episodio 4: la fisica quantistica dei campi

La dualità onda-corpuscolo è, a mio parere, il concetto più sbagliato introdotto con la meccanica quantistica, nonostante sia molto diffuso. È del tutto normale che nella scienza si formulino concetti che, alla fine, si rivelano fallaci. È però sbagliato continuare ad usarli inutilmente. La dualità fu introdotta all’inizio dello sviluppo della MQ per spiegare fenomeni nuovi utilizzando categorie del secolo precedente. Oggi la nostra visione del mondo è cambiata e non c’è bisogno di insistere nel proporre spiegazioni vecchio stile. D’altra parte, nessuno di noi oggi insiste nel cercare di spiegare la relatività supponendo l’esistenza di un etere.

In questo post cerchiamo di descrivere al meglio la natura di un elettrone.


Nell’articolo precedente abbiamo mostrato che un fascio di elettroni si può naturalmente interpretare come composto di un’onda che si propaga nello spazio e nel tempo. L’onda deve avere una certa carica elettrica, essendo soggetta alla forza di Lorentz. Tuttavia, qual è la natura di una tale onda? E cosa significa per un’onda essere caricata elettricamente?

Secondo la teoria ormai consolidata, la luce si propaga come un’onda elettromagnetica, quest’ultima essendo una successione di campi elettrici e magnetici, come descritto dalle equazioni di Maxwell. Vale la pena ricordare che, prima delle opere di Maxwell e di Einstein, i fisici sapevano già che la luce era un’onda, ma poiché erano abituati a vedere le onde propagarsi nei mezzi, supponevano (erroneamente) che dovesse esistere un mezzo attraverso il quale la luce dovesse essere in grado di propagarsi. Solo in seguito fu chiaro che la luce poteva propagarsi nel vuoto perché il campo elettromagnetico si propaga nel vuoto; e solo con la relatività speciale di Einstein fu chiaro che non era necessario alcun mezzo per rendere conto della sua propagazione a velocità costante. Le onde, quindi, hanno perso la loro natura “classica” di perturbazioni che si propagano nei mezzi: le onde possono essere “composte di” campi (e non propagarsi attraverso essi). Il campo e.m. è neutro perché la sua propagazione non è influenzata dalla presenza di altri campi e.m. (i campi possono interferire, ma il modo di propagarsi di un campo è indipendente dagli altri).

Come nel caso della definizione dello stato, è abbastanza difficile trovare una definizione di campo nei libri di fisica. Molti di essi non lo definiscono affatto: si limitano a fornire un elenco (spesso incompleto) delle sue caratteristiche. Il concetto di campo è solitamente introdotto nell’elettrostatica e si dice che è generato dalle cariche ed è definito come la forza per unità di carica esercitata dalla sua sorgente. Una tale definizione, si converrà, non implica alcun “contenuto” fisico per quest’entità: non implica affatto che il campo esista indipendentemente dalla forza di Coulomb. Si tratta solo di una definizione matematica (neanche operativa, perché non è così che si misura il campo).

Comunque la fisica non è matematica, e una definizione precisa, formale, delle grandezze fisiche è sì spesso difficile, ma, del resto, anche inutile in molti casi. Ciò che è importante, per definire una grandezza fisica, è poterla misurare e identificarne le proprietà. Analizziamo quindi una teoria di campo.

  1. Una teoria di campo (come l’elettromagnetismo) è una formulazione matematica della dinamica dei campi. Dato lo stato di un campo al tempo t=0, la teoria ce lo fornisce in qualsiasi altro istante t≠0. Il campo elettrico in un’onda e.m., per esempio, è descritto da E(t,x)=Acos(⍵t+kx+φ).
  2. Dato lo stato delle sorgenti, la teoria permette il calcolo del campo da esse generato. Ad esempio, la teoria di Maxwell permette di calcolare il campo magnetico prodotto da una corrente e il campo elettrico prodotto da un piano uniformemente carico.

Elenchiamo ora le proprietà rilevanti di un campo (quelle che le rendono diverse dalle particelle).

  1. I campi si propagano nello spazio e nel tempo.
  2. I campi sono generati dalle sorgenti. Non esistono né prima né all’interno di essi.
  3. A differenza della “materia” i campi possono si possono creare o distruggere.

Secondo le equazioni di Maxwell, le onde elettromagnetiche sono una successione di campi elettrici e magnetici: una corrente variabile che scorre in un conduttore genera un campo magnetico variabile che a sua volta genera un campo elettrico variabile che genera un campo magnetico e così via, come mostrato di seguito.

Un’onda e.m. è una successione di campi elettrici e magnetici che si propagano

A un certo punto si scopre che la luce può dare origine a fenomeni che si possono spiegare solo ammettendo che sia composta da particelle chiamate fotoni: l’effetto fotoelettrico, l’effetto Compton e la radiazione di un corpo nero si spiegano solo attribuendo una natura corpuscolare alla luce. Chiaramente i due modelli (quello corpuscolare e quello ondulatorio) sono incompatibili.

D’altra parte, un’onda e.m. emessa da un’antenna (un filo in cui scorre una corrente alternata) si può interpretare come un flusso di fotoni irradiati dalla corrente in tutte le direzioni perpendicolari al filo. Mettendo un rivelatore vicino all’antenna possiamo misurare un campo elettrico o magnetico. Tuttavia, se la frequenza dell’onda e.m. è sufficientemente grande, possiamo osservare l’effetto fotoelettrico, che interpretiamo come la collisione di un fotone con un elettrone atomico. I fotoni, come i campi e.m., sono dunque prodotti anch’essi dalla corrente. È utile osservare che le proprietà dei campi e di una teoria di campo, che abbiamo elencato sopra, valgono anche per i fotoni: basta sostituire la parola “fotone” con “campo”. Di conseguenza, un fotone È un campo, qualunque cosa questo significhi (rimandiamo la discussione su cosa questo significhi esattamente a un post successivo: la vita è dura).

Qualunque cosa significhi, quest’osservazione ci fa capire che la luce non è né una particella un’onda: è qualcos’altro che chiameremo campo. Continuare a parlare della dualità onda-corpuscolo è completamente fuorviante¹.

Consideriamo ora i decadimenti beta che consistono nella trasformazione (decadimento) di un neutrone in un protone, con l’emissione di un elettrone e di un neutrino. Il processo è ben descritto dalla teoria delle interazioni deboli. Si noti che neutroni e protoni si distinguono per la loro carica elettrica, alla quale l’interazione debole è cieca. Per essa, quindi, protoni e neutroni sono la stessa particella. Possiamo descrivere il processo come segue:

Il decadimento beta è un processo che consiste nell’emissione di un campo di elettroni e uno di neutrino da parte di una “corrente debole”.

La transizione tra un neutrone e un protone è un cambiamento di stato, come la transizione da i(0) a i(t) di una corrente è un cambiamento di stato della corrente. Il cambiamento di stato dev’essere accompagnato (per la conservazione dell’energia) dall’emissione di uno o più campi. Nell’immagine le linee rosse rappresentano un “campo di elettroni“, mentre quelle blu un “campo di neutrini“. Questi campi non sono campi vettoriali come i campi e.m. e, contrariamente a questi ultimi, non generano altri campi, per cui quando un campo di elettroni si propaga da x(0) a x(t) si trova in x(t) ma non in x(0).

Vediamo se le caratteristiche dei campi e le teorie di campo sopra elencate si applicano ai campi di elettroni e di neutrini. Li chiameremo collettivamente “campi fermionici”.

  1. La teoria quantistica dei campi è costituita di equazioni che permettono di prevedere lo stato di un campo fermionico, noto il suo stato a t=0. In particolare, l’equazione di Dirac descrive la propagazione di un campo libero, in modo simile a quanto fanno le equazioni di Maxwell per i campi e.m.
  2. La sorgente del campo fermionico è, nella teoria di cui sopra, la “corrente debole“. Lo stato dei campi fermionici si può prevedere dalla teoria, se conosciamo lo stato iniziale del neutrone e lo stato finale del protone, proprio come la teoria e.m. dà lo stato dei campi, conoscendo lo stato delle sorgenti in tempi diversi. Si noti che prevedere lo stato di un campo non significa prevedere dove si può trovare una particella, giacché in meccanica quantistica questo non ha senso (vedi episodio 1). Significa essere in grado di prevedere la distribuzione dell’energia dei campi fermionici.

Inoltre, i campi hanno le seguenti proprietà.

  1. I campi fermionici si propagano, chiaramente, nello spazio e nel tempo.
  2. Sono generati da una sorgente: in questo caso la sorgente è la corrente debole. È impossibile creare i campi dal vuoto: abbiamo bisogno di una sorgente. Così com’è impossibile creare un campo e.m. dal vuoto, senza una sorgente (una carica elettrica, sia essa a riposo o in movimento).
  3. I campi fermionici si creano e si distruggono: non preesistono nei nuclei radioattivi (come si pensava all’inizio del XX secolo). La creazione di un campo è un processo che rispetta tutti i principi di conservazione. Così come possono essere creati i campi possono essere distrutti (di nuovo, purché le quantità conservate siano conservate). In modo del tutto simile a quanto accade ai fotoni che possono essere creati da un’antenna e distrutti dall’effetto fotoelettrico.

Ma allora, cos’è un elettrone? Semplice: è un campo (carico, con massa). E un neutrino? Un campo (neutro). E un fotone? Un campo (neutro, senza massa). Perché dovremmo insistere a raffigurarceli come onde o particelle? Benintesi, possiamo farlo nella misura in cui trattiamo la luce con l’ottica geometrica o quella fisica: la scelta dipende dal problema da risolvere. A volte l’ottica geometrica è più semplice e vale la pena trattare la luce come un fascio di raggi, a volte non funziona e si usa la meccanica delle onde. È una mera decisione opportunistica.

Nella moderna meccanica quantistica tutto è un campo: i campi fermionici hanno spin semi-intero (lo spin è un numero quantico che si comporta come un momento angolare intrinseco); i campi bosonici, come i fotoni, hanno spin intero. Fotoni, elettroni e neutrini non sono né particelle, né onde: sono campi. Condividono tutti lo stesso comportamento attribuito a ciò che chiamiamo campo, quindi sono la stessa cosa.

L’interpretazione illustrata sopra può sembrare strana, soprattutto per le persone che sono state esposte a un formale corso di teorie quantistiche dei campi (QFT: Quantum Field Theory). Il modo in cui la QFT è insegnata oggi è molto diverso ed è divertente osservare come una reazione molto frequente da parte degli esperti è “bella la tua teoria, ma mi pare un po’ fantasiosa…non è proprio così che funziona…”, spesso accompagnata da un sorriso di leggero scherno. In realtà, il sorriso si spegne subito quando s’informa l’interlocutore che l’autore di una simile interpretazione non è il sottoscritto, bensì Enrico Fermi che nel suo articolo “Tentativo di una teoria dell’emissione dei raggi beta“² prende le mosse proprio dall’analogia l’emissione di onde e.m. da parte di una corrente e l’emissione di elettroni e neutrini da parte di quella che lui stesso battezza come una corrente debole. Oggi la definizione di corrente debole è effettivamente un po’ diversa e la maggior parte dei giovani fisici non sa nemmeno perché le chiamano “correnti”.


¹ A questo proposito suggerisco di leggere la trascrizione di una famosa lezione di Feynman (spesso usata impropriamente per impressionare la gente con la storia che è impossibile capire la MQ: in realtà, Feynman stava affermando proprio il contrario) in cui diceva “Se dico che [elettroni e fotoni] si comportano come particelle do l’impressione sbagliata; anche se dico che si comportano come onde. Si comportano in un modo tutto loro, che tecnicamente si potrebbe definire quantistico” (grazie a Peppe Liberti per aver fornito il link).

² LA RICERCA SCIENTIFICA, anno IV, vol. II, N. 12, 31 dicembre 1933

4 pensieri riguardo “Per un nuovo modo d’insegnare la meccanica quantistica

  1. Una carica in moto o stazionaria genera dunque un campo. Il campo si propaga nello spazio e i mediatori del campo sono i fotoni. Un elettrone nel vuoto (anch’esso un campo) come intergisce con un fotone? La descrizione tradizionale ci dice che la carica generatrice è “responsabile” delle linee di forza secondo le quali avviene l’interazione ma non chiarisce che ci sono dei fotoni in ballo che fanno sì che l’eventuale elettrone nei paraggi si muova. E come si spiegano attrazione e repulsione attraverso il modello dei campi. Perdoni l’eventuale confusione ma le cose cominciano a diventare complesse e mi sono un po’ sfuggite…

    "Mi piace"

  2. Intanto lasciami dire che se un elettrone interagisce con un fotone non è nel vuoto, ma in un campo di fotoni 🙂

    L’elettrone “assorbe” il fotone eliminandolo (distruggendolo) e acquisendone energia e quantità di moto. Così come li distrugge l’elettrone può creare fotoni, cedendo loro energia e quantità di moto. È così che si spiegano le interazioni elettrostatiche: un elettrone crea un fotone e l’altro lo distrugge. Il risultato netto è che l’energia e la quantità di moto del sistema sono conservate, ma ciascuno dei due elettroni cambia il proprio stato. Il ruolo dei “mediatori” è proprio questo, ma non bisogna pensare ai mediatori come a qualcosa dal comportamento classico. Il mediatore è un campo attraverso cui le particelle (a loro volta dei campi) interagiscono. Un mediatore si distingue da una particella di materia perché si può creare e distruggere a piacimento, a differenza della materia che si può creare o distruggere solo a “coppie” per rispettare le leggi di conservazione.

    Per comprendere appieno questo meccanismo bisogna introdurre le interazioni attraverso la fisica quantistica dei campi. Un passo la volta ci arriveremo, anche se questa parte è necessariamente un po’ più tecnica.

    "Mi piace"

    1. Ottimo. Come spieghiamo l’attrazione/repulsione? Due elettroni si respingono e un protone ed un elettrone si attraggono? I fotoni che si scambiano nel primo caso hanno qualche caratteristica differente rispetto al secondo?
      Sono comunque disposto a rimandare la risposta alle prossime puntate :-D!

      "Mi piace"

      1. La risposta a questa domanda è facile: non serve aspettare 😉 . Il fatto che due particelle cariche si attraggono o si respingano non dipende dal campo. In fisica classica il verso dell’interazione è determinato dalla carica delle particelle interagenti: il campo non determina il verso della forza agente sulla particella.

        Lo stesso accade in questo modello. Il campo è prodotto dalle particelle che possono avere carica positiva o negativa. Se sono concordi il risultato dell’interazione è una forza repulsiva, altrimenti la forza risulta essere attrattiva. La “confusione” deriva dal considerare il mediatore della forza come una “pallina” (in questo i libri di testo e quelli divulgativi hanno una grande responsabilità, perché tentano di spiegare l’interazione con la banale conservazione della quantità di moto nei casi in cui due persone si lanciano una palla). Il campo (il mediatore) NON è una pallina. È un campo: qualcosa che permea lo spazio circostante e che è responsabile della trasmissione dell’interazione. In certi casi il campo si può “localizzare” (come nel caso dell’effetto fotoelettrico).

        Nel prossimo post mi concentrerò sull’interazione tra campo e materia e darò una “spiegazione” (o meglio una visione alternativa) del cosiddetto “collasso” della funzione d’onda.

        "Mi piace"

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...