Per un nuovo modo d’insegnare la meccanica quantistica

episodio 5: il collasso della funzione d’onda

La funzione d’onda fu introdotta nei primi anni dello sviluppo della meccanica quantistica come soluzione dell’equazione di Schrödinger. I fisici hanno faticato un po’ a trovarne il significato, ma alla fine hanno accettato di interpretarla come l’ampiezza di probabilità di trovare una particella a una data coordinata.

I problemi sorgono quando la funzione d’onda collassa: secondo la meccanica quantistica, un sistema può essere in una sovrapposizione di stati, cioè la sua funzione d’onda può essere la somma di più di uno stato fisicamente osservabile. Si scopre che, ogni volta che misuriamo lo stato di un tale sistema, solo uno degli stati della sovrapposizione si manifesta, mentre l’altro scompare. Tale processo si chiama “collasso della funzione d’onda” e dà luogo a problemi di interpretazione non banali (uno dei grattacapi cui ha dato origine è il cosiddetto entanglement quantistico).


In breve, possiamo descrivere il collasso di una funzione d’onda nel modo seguente: si consideri un elettrone in un atomo. Come abbiamo visto nei post precedenti, non ha senso parlare della posizione dell’elettrone nella meccanica quantistica a certe scale, quindi l’elettrone dev’essere descritto come una sorta di nuvola distribuita intorno al nucleo. La maggior parte delle persone è tentata d’interpretare questa nuvola come una nuvola di probabilità, seguendo l’interpretazione originale della funzione d’onda: in sostanza, le persone credono che l’elettrone sia in realtà puntiforme e che SIA in qualche luogo, anche se noi non lo sappiamo ed è la nostra ignoranza a riflettersi nella descrizione di cui sopra. In realtà, quest’interpretazione è sbagliata: un elettrone È in realtà un oggetto distribuito. Se così non fosse, non potremmo spiegare fenomeni come la diffrazione degli elettroni.

Anche quando le persone accettano questo modo di pensare (cioè che un elettrone è un oggetto distribuito), tendono a visualizzare tale oggetto come immaginano una normale nuvola nel cielo: più forse come a una sorta di atmosfera (enormemente estesa) attorno a un pianeta oppure a un oceano che copre il 100% della sua superficie (in questo caso dovremmo immaginare un pianeta davvero minuscolo sommerso da un enorme oceano la cui profondità è centinaia di volte il raggio del pianeta).

Benché questo sia certamente un modo più corretto d’immaginare un elettrone attorno al nucleo, anche in questo caso rischiamo d’immaginarlo nel modo sbagliato. Sappiamo tutti che una nuvola è composta da minuscole gocce d’acqua sospese nell’aria, mentre un oceano è certamente composto da molecole d’acqua, ognuna con la sua individualità. In altre parole, questi oggetti sono discreti e composti di parti.

Gli elettroni no, non sono fatti di parti: l’elettrone È la nuvola; NON è composto da pezzi più piccoli risolvibili come le gocce che formano una nuvola.

Quando cerchiamo di localizzare una particella descritta da una funzione d’onda, accade che di fatto si manifesta in un punto nello spazio, anche se la sua funzione d’onda è distribuita su un ampio intervallo di coordinate. È il caso della diffrazione degli elettroni in un esperimento di doppia fenditura. La funzione d’onda degli elettroni è più ampia della distanza tra le fenditure e interferisce con sé stessa nell’attraversarle. Chiaramente l’elettrone (singolo) passa attraverso entrambe le fenditure allo stesso tempo. D’altra parte, se cerchiamo di rivelare l’elettrone che passa attraverso una sola delle due fenditure (cioè lo costringiamo a interagire con qualcos’altro), possiamo osservare soltanto un elettrone che passa attraverso una sola di esse e non si forma più la figura di diffrazione. Prima d’interagire con lo strumento l’elettrone si trova in una sovrapposizione di stati │e〉=a│D〉+b│S〉, dove │D〉 rappresenta un elettrone che passa attraverso la fessura destra e │S〉 un elettrone che passa attraverso quella sinistra. a e b sono costanti tali che a²+b²=1. Quando il sistema interagisce con un rivelatore posto sulla fessura destra, solo │D〉 sopravvive e la funzione d’onda collassa in un processo che istantaneamente trasforma│e〉 in │D〉.

Un tale processo è visto con sospetto dalla maggior parte delle persone e considerato (probabilmente giustamente) difficile da capire. È interessante osservare che, tuttavia, un decadimento beta, in cui un neutrone scompare istantaneamente per far posto a un protone, un elettrone e un neutrino creati dal vuoto, non turba le menti nello stesso modo. In realtà, entrambi i processi sono piuttosto simili tra loro: qualcosa scompare mentre qualcos’altro appare come risultato di un’interazione. Possiamo pensare al collasso della funzione d’onda come a un processo in cui il campo di elettroni viene distrutto dall’interazione con lo schermo con le fenditure mentre, sul lato opposto, un nuovo campo di elettroni è creato e irradiato da entrambe le fessure o solo dalla fessura destra.

Il collasso ci sembra strano perché la nostra mente tende a interpretare la funzione d’onda proprio come una nuvola: composta di parti. Perché il collasso avvenga, in questo modello, le parti di cui è fatta la nuvola devono correre verso la giusta fenditura e concentrarsi in un punto ricostituendo la natura puntiforme dell’elettrone che ci piace tanto. Evidentemente una tale “corsa” richiede un certo tempo per accadere e questo è in contrasto con le osservazioni secondo le quali il collasso è istantaneo.

Proviamo però a metterci nei panni di qualcuno che non ha mai studiato fisica o che sia vissuto prima che Fizeau misurasse la velocità della luce e immaginiamo di trovarci in una grande stanza senza finestre. Se accendiamo la luce vediamo che la stanza si riempie istantaneamente di luce. Oggi sappiamo che non è così, ma non ci sorprenderebbe più di tanto sapere che la luce appare istantaneamente in ogni punto della stanza nello stesso momento se la sua velocità fosse infinita come si credeva fino a qualche secolo fa. In fondo, un tale modello, sembra persino più ragionevole rispetto a quel che ci racconta la relatività speciale. Immaginando che la luce appaia immediatamente e contemporaneamente in tutti i punti di una stanza, dovremmo provare a pensare a un elettrone come a qualcosa distribuito su un volume che appare istantaneamente in tutti i punti dello spazio nel momento nella sua creazione (produzione). Allo stesso modo, quando si distrugge, un elettrone scompare istantaneamente da ogni parte. Se ci si pensa un po’ ci si può facilmente convincere che non è poi così strano. Il processo è simile a quel che ci s’immaginava facesse la luce quando si era bambini, prima di sapere come si propaga.

Personalmente considero ormai obsoleto il concetto di funzione d’onda e il suo collasso. Preferisco pensare in termini di campi, che non sono né particelle, né onde, ma qualcosa che si estende su volumi (potenzialmente anche molto grandi) e che può manifestarsi istantaneamente e allo stesso tempo (come, d’altra parte, i campi classici erano stati immaginati prima di Maxwell)¹. Così come si possono creare istantaneamente in un grande volume, i campi si possono anche distruggere. L’interazione con qualcosa consiste nella distruzione del campo incidente e nella creazione di un nuovo campo. Il campo emergente può essere distribuito come una figura di diffrazione o concentrato vicino a una delle fenditure, secondo l’interazione, così come, nella fisica classica, la traiettoria di un corpo che cade dipende dalle circostanze: per esempio, se l’oggetto è posto su un piano inclinato scivola seguendo una traiettoria obliqua; se no cade verticalmente.

La MQ non è deterministica: i risultati di un esperimento sono casuali e seguono una distribuzione. Le leggi della fisica possono solo prevedere la forma di queste distribuzioni, non quale dei possibili eventi si realizzerà. Anche questo non è poi così diverso da quanto avviene nella meccanica classica. Se si lancia un dado, con la meccanica classica non sappiamo prevedere esattamente che punteggio si otterrà (in linea di principio si può, ma in pratica è impossibile). L’unica differenza rispetto alla meccanica classica è che nella MQ la previsione del punteggio è impossibile anche solo in linea di principio: questa cosa, a mio modesto avviso, è persino più rassicurante rispetto a quanto previsto dalla meccanica classica. Se questa fosse vera, il destino di tutto l’Universo, comprese le nostre storie, sarebbe già scritto dall’inizio dei tempi.


¹ Va detto che la propagazione del campo avviene secondo quanto previsto dalla relatività e la relatività della simultaneità non è violata da questo.

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...