Conclusa la III edizione della scuola di fisica con Arduino e smartphone

Si è conclusa un’altra edizione di successo delle scuole di fisica con Arduino e smartphone per insegnanti delle superiori. La scuola è una full immersion di tre giorni durante i quali agli insegnanti si chiede di progettare, costruire e condurre un esperimento, analizzarne i dati e produrre una documentazione che serva ai loro colleghi per rifarlo.

I partecipanti alla III edizione della scuola di fisica con Arduino e smartphone

Tutti gli esperimenti devono essere realizzabili con materiali facilmente reperibili: non a caso uno dei momenti più topici della scuola è la shopping session durante la quale tutta la banda di insegnanti si reca nel negozio gestito da cinesi vicino al laboratorio dove lavoriamo per comprare il necessario (grazie a Eva Shopping che si presta a essere invasa da un’orda di persone che non sanno ancora cosa vogliono).

Quest’anno sono stati realizzati diversi esperimenti che vanno dall’induzione elettromagnetica alla misura della costante di Planck, dall’interferenza tra onde alla misura della velocità del suono in funzione della temperatura.

Le scuole di fisica con Arduino e smartphone sono apprezzate anche all’estero. Prevediamo di fare un’analoga attività nell’Università di Paris-Sud a maggio, destinata agli studenti universitari. In autunno saremo a Oslo per un progetto del tutto simile. Abbiamo inoltre vinto un bando per esportare il modello in Uruguay e ci hanno invitato da Cuba a tenere un workshop presso la loro Università.

Maggiori informazioni e la documentazione dei progetti sul sito web del Dipartimento di Fisica di Sapienza.

Un nuovo kg

Venerdì 16 novembre è stata adottata una nuova definizione dell’unità di massa a livello internazionale: il kg.

Fino a ieri il kg era definito come la massa di un cilindro di una lega di platino e iridio conservata sotto tre campane di vetro presso il Bureau International des Poids e Measures a Parigi. Una definizione che creava qualche problema dal momento che il cilindro è, per quanto protetto, soggetto a usura e all’accumulo di polveri estranee.

Da ieri il kg è definito in termini di una costante universale: la costante di Planck. Si è deciso che la costante di Planck vale 6,626 070 15 ×10-34 kg m2 s-1. Essendo la costante definita in questo modo, come la velocità della luce non ha errore. Il kg dunque è la massa per la quale la costante di Planck assume il valore che le è stato dato.

Una volta definita l’unità di misura si deve però anche spiegare come si ottiene un campione di tale unità, la cosiddetta mise en pratique. Per il kg la mise en pratique consiste in un’accurata operazione di misura del peso (che non è la massa, ma è a essa legata attraverso la relazione secondo la quale il peso di un oggetto di massa m è dato dal valore di tale massa moltiplicata per l’accelerazione di gravità). Per eseguire questa misura di precisione si usa una bilancia di Kibble. La bilancia, idealmente, funziona nel modo seguente. Su un piatto si mette la massa da misurare. Per effetto del peso il piatto subisce una forza d’intensità mg. Sull’altro si trova, disposto in modo da giacere sul piano orizzontale, una bobina di filo conduttore di lunghezza ℓ che è posta in un campo magnetico radiale B. Se si fa circolare una corrente I nella bobina, questa subisce una forza diretta verticalmente di modulo BIℓ. Se la forza dovuta all’interazione tra campo magnetico e filo è verticale e con verso opposto a quella di gravità si ha che

mg = BIℓ

da cui si ricava m. In alternativa si può misurare la fem che si misura ai capi della stessa bobina quando questa si muove verticalmente con velocità v nello stesso campo magnetico B. In questo caso la Legge di Faraday-Neumann prevede che la fem sia uguale alla variazione di flusso del campo magnetico che attraversa la bobina. Idealizzando la bobina come una spira circolare, cadendo questa descrive un cilindro la cui superficie laterale è l’unica attraversata (perpendicolarmente) dal campo magnetico. Il flusso del campo è dunque

Φ = BS = Bℓh = Bℓvt

Di conseguenza la sua variazione nell’unità di tempo vale

V = ΔΦ/Δt = Bℓv

da cui si ricava che il prodotto Bℓ vale V/v, con V che è uguale alla tensione che si misura ai capi della bobina mentre si muove. Possiamo cosé eliminare il prodotto Bℓ alla prima relazione e ottenere

mgv = IV

Nella pratica la misura di I e di V è effettuata attraverso dispositivi quantistici (a effetto Josephson) che permettono misure molto accurate perché i valori di corrente e di tensione che si misurano sono quantizzati. Resta il problema di determinare con precisione g e v. Queste misure sono affidate a interferometri laser che misurano lo spostarsi delle frange d’interferenza prodotta dalla luce riflessa da uno specchio montato sulla bobina o su un dispositivo lasciato cadere per misurare con precisione l’accelerazione di gravità (gravitometro).

Una serata al Bar Europa

Venerdì 9 novembre 2018 sono stato invitato al “Bar Europa“: una rubrica culturale all’interno del programma Rock Night Show di DJ Drago, su Radio Godot, condotta da Michele Gerace. Bar Europa è uno spazio di discussione, una comunità, che ambisce a promuovere il senso di appartenenza all’Europa e lo fa attraverso la promozione di iniziative culturali complesse, nel senso che mescola discipline tra loro diverse per evidenziare come le differenze non siano da temere, come qualcuno vuol far credere, ma siano una ricchezza.

Puoi rivedere la puntata (o meglio la porzione che è stata registrata) qui

Questo post termina con l’augurio che conclude le puntate della rubrica: Viva l’Europa!

Esperimenti radioattivi

Con il simulatore di Geiger presentato nell’ultimo post si possono solo fare dimostrazioni qualitative circa la maniera in cui si comporta un rivelatore di particelle quando si avvicina una sorgente radioattiva. Al più si può fare una serie di misure che permettono di stabilire la legge secondo la quale il numero di conteggi per unità di tempo diminuisce col quadrato della distanza, come nel filmato.

Una serie di misure più interessanti si può seguire con il programma riportato sotto.

#define _DEBUG

#define CLIK 8
#define ECHO 2
#define TRIG 3

#define TAU 2.2414 // the decay time in minutes
#define c 340.e-6  // the speed of sound

float tau = TAU*60.;
unsigned long t0;

void setup() {
  pinMode(CLIK, OUTPUT);
  pinMode(ECHO, INPUT);
  pinMode(TRIG, OUTPUT);
  digitalWrite(TRIG, LOW);
  digitalWrite(CLIK, LOW);
  t0 = millis();
#ifdef _DEBUG
  Serial.begin(9600);
  Serial.print("============ tau = ");
  Serial.print(tau);
  Serial.println(" s");
#endif
}

void trigger() {
  /* trigger the sensor */
  digitalWrite(TRIG, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG, LOW);
}

float measure() {
  /* measure the distance between the sensor and the obstacle */
  float d = 0.;
  for (int i = 0; i < 15; i++) {
    trigger();
    unsigned long T = pulseIn(ECHO, HIGH);
    d += c*T/2.;
  }
  return d;
}

int status = HIGH; // the current status of the relay

void loop() {
  /* measure distance and time */
  float d = measure();
  float t = (millis() - t0)*1.e-3;
  /* compute the probability of a decay */
  float Pdecay = exp(-t/tau);
  float f = (float)random(1000)/1000.;
  /* if an atom decay... */
  if (f < Pdecay) {
    /* ...detect it with a probability that depens on d */
    unsigned long trigger = 10000./(d*d); 
    unsigned long r = random(10000);
    if (r < trigger) {
      digitalWrite(CLIK, status);
#ifdef _DEBUG
      Serial.println(t);
#endif
      if (status == HIGH) {
        status = LOW;
      } else {
        status = HIGH;
      }
    }
  }
}

Il programma è solo apparentemente complicato. La costante definita alla linea

#define TAU 2.2414

rappresenta il tempo di vita medio, espresso in minuti, di una ipotetica sostanza radioattiva (in questo caso dell’Alluminio 28: quello ottenuto da Enrico Fermi nei suoi esperimenti sulla radioattività artificiale).

Con questa versione dello sketch di Arduino i click si susseguono con una probabilità che diminuisce esponenzialmente con un tempo caratteristico TAU.

A questo punto simulare una misura è facile. Si avvicina, a un’opportuna distanza, la presunta sostanza radioattiva e si contano i click che si odono nell’unità di tempo. Per esempio, si possono contare i click ogni 20 o 30 secondi, avendo cura di porre la sorgente a una distanza tale da avere un numero statisticamente significativo di click in questo intervallo di tempo (all’inizio delle misure questo numero dovrebbe essere almeno attorno a 80-100). Dividendo il numero di click N per l’intervallo di tempo T si ottiene la frequenza dei conteggi N/T. Si ripete la misura a tempi successivi e si osserva che il rapporto N/T non è costante, ma diminuisce col tempo. Se si fa un grafico di N/T (o semplicemente di N) in funzione del tempo si ottiene la figura sotto riportata:

Fermi_Al

La figura include il “fit” ai dati sperimentali eseguito con un esponenziale. Per ottenere una prima stima del tempo di decadimento senza dover eseguire un complesso fit con un esponenziale si può riportare il logaritmo del numero di conteggi in funzione del tempo, il che darà al grafico l’aspetto di una retta, di cui basta misurare la pendenza. Oppure si può, per tempi relativamente piccoli, approssimare l’esponenziale con una retta

N·exp(-t/τ)≈N(1-t/τ).

Le misure fluttuano in maniera statistica, quindi si ha l’impressione di fare una vera misura e s’impara a gestire gli errori sistematici e statistici in modo corretto. Conoscendo il tempo di vita impostato si può confrontare il valore ottenuto con quello atteso per valutare la bontà delle misure eseguite.

 

Un simulatore di Geiger

Dovendo fare una conferenza divulgativa sugli esperimenti che hanno fruttato il Premio Nobel a Enrico Fermi, nell’ottantesimo della sua attribuzione, ho deciso che avrei dovuto ripetere alcuni dei suoi fondamentali esperimenti in aula, in modo da spiegare bene quali furono le misure e i risultati che condussero il grande scienziato ad annunciare la scoperta del metodo per rendere radioattivi i materiali.

Fare esperimenti con materiali radioattivi in aula, però, non è solo vietato. È quanto meno inopportuno. Allora ho deciso che mi sarei avvalso di una simulazione: ma non di una “classica” simulazione al computer, bensì di una simulazione “concreta”.

Avevo bisogno di far vedere cosa succede quando si avvicina una sorgente radioattiva a un contatore Geiger. Ho quindi costruito un finto contatore Geiger usando una scheda Arduino, un sensore ultrasonico e un relay.

IMG_20180514_093515.jpg

Il sensore ultrasonico richiede quattro collegamenti: due servono per alimentarlo (GND e 5V), uno per il cosiddetto trigger e l’altro per l’eco. Inviando un impulso rettangolare abbastanza lungo (10 μs) al pin di trigger, il sensore ultrasonico emette un treno d’impulsi ad alta frequenza e misura il tempo che intercorre tra l’invio e la successiva rivelazione dello stesso treno d’impulsi. La rivelazione avviene quando gli impulsi sono riflessi da un ostacolo. Questo tempo è tanto più lungo quanto maggiore è la distanza tra il sensore e l’ostacolo.

Il relay è stato invece collegato a un terzo pin (oltre ai due necessari per l’alimentazione).

Tutto il sistema è stato alloggiato dentro un tubo di cartone (di quelli attorno ai quali è avvolta la carta da cucina) in modo tale che l’altoparlante e il microfono del sensore ultrasonico sporgessero lungo la superficie laterale a un estremo del tubo.

Il finto Geiger misura continuamente la distanza alla quale si trova un eventuale ostacolo e definisce una variabile trigger che dipende dalla distanza misurata al quadrato:

 unsigned long trigger = 1000./(d*d);

Quindi genera un numero random compreso tra 0 e 1000:

 unsigned long r = random(1000);

Se questo numero è minore di trigger fa cambiare stato del relay da chiuso ad aperto o viceversa:

if (r < trigger) {
  digitalWrite(CLIK, status);
  if (status == HIGH) {
    status = LOW;
  } else {
    status = HIGH;
  }
}

Il relay, cambiando stato, produce un rumorino che imita il click di un vero Geiger. Con questo codice la probabilità di far scattare il relay aumenta al diminuire della distanza di un ostacolo come 1/r2. Se l’ostacolo è molto lontano la probabilità di un click tende a zero. Avvicinando qualsiasi oggetto (radioattivo o meno) il numero di click per unità di tempo aumenta sempre di più esattamente come ci si aspetta nel caso reale. Per simulare ciò che avviene quando si avvicina una sostanza non radioattiva è sufficiente manipolare il campione in modo tale da avvicinarlo al Geiger senza metterlo di fronte al sensore ultrasonico.

 

Le scuole di Fisica con Arduino e Smartphone crescono

Le Scuole di Fisica con Arduino e Smartphone cui ho dato vita dal 2016 continuano a riscuotere un discreto successo. Alcuni insegnanti hanno già iniziato a lavorare con Arduino nelle loro classi e presumibilmente avremo materiale da presentare al prossimo Congresso della Società Italiana di Fisica.

Recentemente è stato pubblicato un mio post su Math is in the Air: un blog di divulgazione della matematica. Alcuni insegnanti hanno cominciato a fare sperimentazione in classe con Arduino e a Marzo parteciperò a un Workshop internazionale a Parigi per illustrare le nostre esperienze a un panel di esperti provenienti da vari Paesi europei.

Abbiamo anche ricevuto un invito per presentare le Scuole al Summer Meeting dell’American Association of Physics Teachers, dove condurremo anche un workshop sull’uso di Arduino per esperimenti scientifici.

 

La meccanica quantistica è incomprensibile?

Qualche giorno fa è uscito questo articolo su Repubblica.it. Si parlava di un libro scolastico che un’utente (con l’apostrofo perché si tratta di una donna) di Twitter (@roccaverrastro) segnalava per la presenza di una corbelleria relativamente alla forza di gravità. Nel libro incriminato, la cui foto compare nello stream dell’utente che l’ha segnalato, si dice testualmente: “[la diminuzione della forza di gravità con la distanza] è ben evidente osservando gli astronauti in orbita sulla Stazione Spaziale Internazionale, dove l’intensità della forza di gravità è ridotta al punto che persone e oggetti devono essere ancorati a dei sostegni per non volare nell’abitacolo“.

Bene hanno fatto coloro che si sono prodigati nello spiegare che le cose non stanno affatto così (inclusa Samantha Cristoforetti, meglio nota come @AstroSamantha) e quindi non starò qui a spiegare per l’ennesima volta che il motivo per cui gli astronauti fluttuano senza peso non è affatto che alla quota della ISS la gravità non c’è (come farebbe se no a orbitare?), ma perché di fatto la ISS è in perenne caduta libera.

Userò invece questo episodio come pretesto per discutere un paio di argomenti che m’interessano molto di più: l’autorevolezza dei libri (in generale, non solo di quelli di testo) e il convincimento che la meccanica quantistica sia del tutto contro-intuitiva.

Sull’autorevolezza dei libri

La critica più frequente ai contenuti che si trovano sulle pagine del World Wide Web o WWW (non di Internet, che è l’infrastruttura sulla quale il WWW funziona) è la loro presunta inattendibilità o inaffidabilità. Poiché chiunque è libero di scrivere quel che vuole sul Web, la maggior parte dei suoi contenuti sarebbe del tutto inaffidabile e comunque, anche qualora il contenuto di una pagina (come quelle di Wikipedia, ad esempio) fosse corretto, sarebbe unicamente il frutto di un copia-incolla e non di una conoscenza profonda e certificata dell’argomento.

Forse che non è la stessa cosa per i libri? Di libri inattendibili ce ne sono a bizzeffe (basta pensare a tutte le sciocchezze pubblicate sull’esoterismo, sugli alieni e su numerosi altri fenomeni “misteriosi”). Pubblicati da case editrici talvolta serissime. Anche gli autori più affermati, in fondo, fanno del copia-incolla. Non è che io, che scrivo di fisica, ho costruito da solo tutta la conoscenza che rendo pubblica! L’ho imparata sui libri scritti dai miei predecessori. Perciò, quando scrivo di fisica, almeno in parte, non faccio altro che riscrivere ciò che chi mi ha preceduto ha scritto.

Gli editori non controllano affatto la correttezza di quanto si scrive su un libro. Chissà perché la maggior parte delle persone pensa questo. Agli editori importa solo che il libro sia privo di errori tipografici e che sia di relativamente facile lettura. Per questa ragione ingaggiano copy-editor e grafici. Non assumono referee per i contenuti. Per quelli, al massimo, si affidano alla reputazione dell’autore. Il quale può anche essere un premio Nobel, ma non per questo è infallibile. Di scemenze ne dice chiunque (anche il sottoscritto). Dunque non mi stupisce che su un libro di scienze si possano trovare affermazioni non corrette. L’importante è che l’autore le faccia correggere una volta segnalate.

Non si tratta di un caso così infrequente. Un caso molto diffuso è quello secondo il quale gli aerei volano grazie alla portanza generata dal profilo alare che costringerebbe l’aria che passa sopra l’ala a viaggiare più rapidamente di quella che passa al di sotto, provocando così una differenza di pressione che sostiene il velivolo. Quest’affermazione, molto diffusa anche su testi di livello universitario, appare meno sconvolgente di quella sulla gravità del libro incriminato, solo perché l’argomento è molto meno noto. Ma è un’affermazione del tutto sbagliata! Non c’è nessun motivo per cui l’aria che viaggia sopra un’ala dovrebbe sentirsi autorizzata a correre di più rispetto a quella che viaggia sotto!

Sull’innaturalezza della meccanica quantistica

I miei colleghi che insegnano nelle scuole superiori lamentano che sarebbe molto difficile insegnare la fisica moderna ai loro studenti perché i fenomeni previsti da quest’ultima sono del tutto estranei al senso comune. Forse che la fisica classica è intuitiva?

Il testo segnalato in apertura di questo post dimostra che non è affatto così. La gente vede gli astronauti fluttuare senza peso nello spazio. Cosa deve pensare, se non che in quel punto non esista la forza di gravità? Sembrerebbe una spiegazione del tutto naturale. O no?

Il primo e il secondo principio della dinamica ci dicono che un corpo non soggetto a forze si muove di moto rettilineo uniforme. Ma chi l’ha mai visto? Tutti noi abbiamo evidenza del contrario! Un corpo si muove (di moto rettilineo uniforme o di qualunque altro tipo) solo se applichiamo una forza su di esso! Non s’è mai visto un oggetto muoversi a prescindere dall’applicazione di una qualche sollecitazione. Del resto non è un caso che per soppiantare la teoria dell’impetus ci siano voluti quasi due millenni.

E le forze fittizie? Ne vogliamo parlare? Tutte le forze che i fisici dicono che “non esistono” sono forse le uniche delle quali abbiamo esperienza diretta: sono quelle forze che si provano affrontando una curva stando nell’abitacolo di un’auto o sull’autobus quando frena o parte bruscamente; o ancora sulla giostra dei “calcinculo” e che ci permette di sollevarci rispetto alla posizione assunta quando la forza è ferma. Non esistono? Come sarebbe che non esistono?

Il lavoro compiuto da un facchino che spinga una cassa lungo un piano inclinato o che la sollevi alla stessa quota verticalmente è lo stesso. In più, il lavoro fatto dal facchino per tenere la cassa in braccio, ferma, è nullo. Ma davvero?

Ogni insegnante di fisica sa che le gambe (di metallo) e la seduta (di legno) delle sedie occupate dai suoi studenti sono (evidentemente) alla stessa temperatura. Però toccando con le mani la seduta e le gambe si prova una sensazione di caldo nel primo caso e di freddo nel secondo. Come la mettiamo?

Come si vede chiaramente, non è affatto vero che la fisica classica sia più facile di quella moderna perché più intuitiva. Al contrario: la mia opinione è che la fisica classica sia molto meno intuitiva di quella quantistica. Il fatto è che ancora non ci siamo liberati dal fardello di Newton, benché siano ormai trascorsi un centinaio d’anni dalla nascita della fisica quantistica. Del resto, se ancora non ci siamo liberati dal fardello di Aristotele per quel che riguarda la fisica classica come si può pretendere che in un tempo così breve ci si convinca che le cose non stanno esattamente come pensava Newton?

Ma, per favore, non dite che più che la meccanica quantistica non si capisce!