Conclusa la III edizione della scuola di fisica con Arduino e smartphone

Si è conclusa un’altra edizione di successo delle scuole di fisica con Arduino e smartphone per insegnanti delle superiori. La scuola è una full immersion di tre giorni durante i quali agli insegnanti si chiede di progettare, costruire e condurre un esperimento, analizzarne i dati e produrre una documentazione che serva ai loro colleghi per rifarlo.

I partecipanti alla III edizione della scuola di fisica con Arduino e smartphone

Tutti gli esperimenti devono essere realizzabili con materiali facilmente reperibili: non a caso uno dei momenti più topici della scuola è la shopping session durante la quale tutta la banda di insegnanti si reca nel negozio gestito da cinesi vicino al laboratorio dove lavoriamo per comprare il necessario (grazie a Eva Shopping che si presta a essere invasa da un’orda di persone che non sanno ancora cosa vogliono).

Quest’anno sono stati realizzati diversi esperimenti che vanno dall’induzione elettromagnetica alla misura della costante di Planck, dall’interferenza tra onde alla misura della velocità del suono in funzione della temperatura.

Le scuole di fisica con Arduino e smartphone sono apprezzate anche all’estero. Prevediamo di fare un’analoga attività nell’Università di Paris-Sud a maggio, destinata agli studenti universitari. In autunno saremo a Oslo per un progetto del tutto simile. Abbiamo inoltre vinto un bando per esportare il modello in Uruguay e ci hanno invitato da Cuba a tenere un workshop presso la loro Università.

Maggiori informazioni e la documentazione dei progetti sul sito web del Dipartimento di Fisica di Sapienza.

L’esame di Stato 2019 per i Licei Scientifici

In questo post commento due documenti ufficiali del MIUR, che illustrano i caratteri della prova d’esame per i Licei Scientifici. Si tratta di commenti scaturiti da un mio recente intervento in un incontro con gli insegnanti del PLS di Matematica di Sapienza, nel corso del quale ho commentato le prove date come simulazione dell’esame di Stato. La soluzione delle prove da me proposta è stata pubblicata su Patreon, da dove potete scaricarla.

Il primo documento commentato è lo scheda di regolamento recante le indicazioni nazionali riguardanti gli obiettivi specifici di apprendimento. Meglio noto come “indicazioni nazionali”. In particolare le indicazioni per i licei scientifici sono contenute nell’Allegato F del documento.

Nel documento si dice esplicitamente che “lo studente avrà acquisito le seguenti competenze: osservare e identificare fenomeni; formulare ipotesi esplicative utilizzando modelli, analogie e leggi; formalizzare un problema di fisica e applicare gli strumenti matematici e disciplinari rilevanti per la sua risoluzione; fare esperienza e rendere ragione del significato dei vari aspetti del metodo sperimentale, dove l’esperimento e’ inteso come interrogazione ragionata dei fenomeni naturali, scelta delle variabili significative, raccolta e analisi critica dei dati e dell’affidabilità di un processo di misura, costruzione e/o validazione di modelli”

Questo significa che lo studente deve aver imparato a lavorare con i dati sperimentali. Deve quindi almeno essere in grado di estrarre informazioni da grafici e tabelle o altro genere di dati. Non è particolarmente importante che sia capace di condurre un esperimento in prima persona. Questo giustifica la tipologia di almeno uno dei problemi della prova proposta come simulazione. 

Una tale necessità è ben nota da anni e se gli studenti non sono preparati è perché, per molte ragioni, alcune delle quali sicuramente comprensibili, il modo di fare didattica in fisica non è cambiato. È indispensabile cambiare rotta. Il lavoro di analisi dei dati dev’essere preso in seria considerazione e il Dipartimento di Fisica è pronto a fornire la necessaria assistenza.

“La libertà, la competenza e la sensibilità dell’insegnante – che valuterà di volta in volta il percorso didattico piú adeguato alla singola classe – svolgeranno un ruolo fondamentale nel trovare un raccordo con altri insegnamenti” significa che non c’è alcun bisogno di puntare troppo sul formalismo. Le prove proposte non richiedono particolari abilità formali in fisica. Richiedono piuttosto la comprensione del significato delle equazioni (parliamo della prova di fisica: per quella di matematica e fisica l’abilità richiesta è quella richiesta dalle indicazioni di matematica).

Le indicazioni non richiedono esplicitamente un intenso programma di lavoro in laboratorio: richiedono piuttosto “di esplorare fenomeni (sviluppare abilità relative alla misura) e di descriverli con un linguaggio adeguato (incertezze, cifre significative, grafici)”. Il biennio va sfruttato per abituare gli studenti a questo lavoro. Si può approfittare di questo per introdurre alcuni semplici argomenti, ma il focus dev’essere sulla pratica del laboratorio (più intesa nel senso della capacità di analizzare i dati che di fare l’esperimento). Tutta la calorimetria e la cinematica, per esempio, si possono facilmente anticipare in questo periodo, così come l’ottica geometrica.

Segue una serie di argomenti piuttosto esplicito e chiaro: oltre agli argomenti già citati, si parla dei passaggi di stato (che significa che si deve comprendere il concetto di calore latente). Per la dinamica la II Legge di Newton è il punto centrale, insieme al concetto di energia e lavoro che ritornano in tutta la durata del corso di studi.

Nel secondo biennio la capacità di trattare con i dati sperimentali s’intende acquisita e quindi si può passare a una trattazione più formale degli argomenti, senza però mai dimenticare che tutti i risultati che si conseguono sono comunque il frutto dell’analisi sperimentale. Gli esperimenti che permettono di formulare le leggi, dunque, vanno accuratamente descritti, quanto meno.

Allo studente si chiede quindi di conoscere l’equazione di stato dei gas e la teoria cinetica. Il primo e il secondo principio della termodinamica si danno anche per acquisiti. Di conseguenza lo studente dovrebbe saper calcolare le grandezze rilevanti nelle trasformazioni di un sistema termodinamico: calore, lavoro, energia interna, entropia.

Delle onde occorre conoscere i fenomeni della sovrapposizione, interferenza e diffrazione. Si parla di sorgenti coerenti, quindi trattiamo sempre casi molto semplici per i quali il formalismo può essere reso molto semplice. Si chiede anche che lo studente sappia declinare i risultati relativamente a onde sonore e a onde elettromagnetiche (in sostanza deve conoscere la differenza di comportamento tra queste).

Lo studente deve quindi conoscere l’elettrostatica e la gravitazione: nel primo caso ci si aspetta che sappia come sono fatti i campi prodotti da distribuzioni particolari di carica attraverso il Teorema di Gauss; nel secondo che conosca le Leggi di Keplero. Il concetto di energia e di potenziale ricorre in questo settore. È importante mettere sempre in relazione queste conoscenze con quelle acquisite in precedenza.

Dei fenomeni elettromagnetici quelli rilevanti sono la Forza di Lorentz e l’induzione elettromagnetica, il Teorema di Gauss e il Teorema di Ampère (il primo peraltro non riguarda solo l’elettromagnetismo). Essendo sempre importante trattare aspetti energetici si deve trattare la densità d’energia del campo elettrico e del campo magnetico e introdurre le onde e.m., anche solamente a livello qualitativo.

Per quanto riguarda la relatività il campo è ristretto alla conoscenza dei fenomeni della simultaneità tra gli eventi, la contrazione delle lunghezze e la dilatazione dei tempi, nonché della relazione tra massa ed energia. Di fatto basta la conoscenza delle trasformazioni di Lorentz.

Per la meccanica quantistica occorre aver compreso il dualismo onda-corpuscolo e conoscere l’effetto fotoelettrico, nonché saper spiegare gli spettri di emissione e assorbimento alla luce della teoria dell’atomo di Bohr. Completa la conoscenza della materia la relazione di de Broglie che lega quantità di moto e lunghezza d’onda.

È vero che il quadro di riferimento presenta alcune importanti discrepanze da quanto evidenziato sopra. La buona notizia è che l’elenco degli argomenti su cui può vertere la prova non è troppo lungo ed è abbastanza comune. A parte i punti in cui si dice che lo studente deve saper lavorare con i dati sperimentali, per i quali vale quanto detto sopra.

Effettivamente si possono esprimere perplessità circa la presenza dei corpi rigidi, che non sono certo tra i più semplici da trattare, né tra gli argomenti più amati. Anche la presenza dello spettro di corpo nero tra questi argomenti non è molto coerente con le indicazioni nazionali. 

La mia interpretazione è che il cenno ai corpi rigidi è presente perché all’ultimo punto dei quadri di riferimento per la fisica è citato il momento delle forze magnetiche agenti su una spira. È evidente che se si vuole trattare questo caso il concetto di momento di una forza occorre introdurlo. Non ritengo che ci possano (debbano) essere veri problemi sui corpi rigidi in un compito d’esame. 

Per quanto riguarda il cenno al corpo nero, invece, va detto che nelle indicazioni nazionali è citato, sebbene sembrerebbe non fondamentale (non lo è, in effetti). La trattazione teorica dello spettro di corpo nero è particolarmente complessa e non adatta a essere discussa in dettaglio in un liceo: di conseguenza non si vede come si possano formulare problemi che vadano al di là di qualcosa con un taglio che  però dovrebbe rientrare nella tipologia di problemi di carattere sperimentale. Da questo punto di vista dovrebbe essere sufficiente conoscere il problema del corpo nero a livello molto qualitativo per cui si possono immaginare problemi per i quali basta estrarre dati da un grafico o da tabelle, senza conoscere troppo a fondo il formalismo di questo fenomeno.

Come sempre, quanto sopra è una mia interpretazione naturalmente possono sempre essere smentito dai fatti. Ritengo però che, al di là di qualche critica che certamente si può avanzare nei confronti delle prove proposte come simulazione, tali prove siano sostanzialmente equilibrate. Le simulazioni servono anche a sondare l’umore degli insegnanti e a calibrare meglio la prova d’esame. Va sempre ricordato che le prove sono preparate a cura di colleghi della Scuola, che quindi dovrebbero rendersi conto delle capacità degli studenti di un liceo e dovrebbero essere in grado di calibrare la prova in gradi di difficoltà differenti.

Va anche ricordato che non ci si aspetta che tutti gli studenti siano in grado di portare a termine l’intera prova (un problema e quattro quesiti a scelta tra due problemi e otto quesiti). Le valutazioni dovrebbero andare da un minimo che corrisponde all’individuazione qualitativa delle principali leggi fisiche che governano i fenomeni descritti nei quesiti al massimo che corrisponde a una soluzione formalmente e numericamente corretta di tutte le prove.

Un nuovo kg

Venerdì 16 novembre è stata adottata una nuova definizione dell’unità di massa a livello internazionale: il kg.

Fino a ieri il kg era definito come la massa di un cilindro di una lega di platino e iridio conservata sotto tre campane di vetro presso il Bureau International des Poids e Measures a Parigi. Una definizione che creava qualche problema dal momento che il cilindro è, per quanto protetto, soggetto a usura e all’accumulo di polveri estranee.

Da ieri il kg è definito in termini di una costante universale: la costante di Planck. Si è deciso che la costante di Planck vale 6,626 070 15 ×10-34 kg m2 s-1. Essendo la costante definita in questo modo, come la velocità della luce non ha errore. Il kg dunque è la massa per la quale la costante di Planck assume il valore che le è stato dato.

Una volta definita l’unità di misura si deve però anche spiegare come si ottiene un campione di tale unità, la cosiddetta mise en pratique. Per il kg la mise en pratique consiste in un’accurata operazione di misura del peso (che non è la massa, ma è a essa legata attraverso la relazione secondo la quale il peso di un oggetto di massa m è dato dal valore di tale massa moltiplicata per l’accelerazione di gravità). Per eseguire questa misura di precisione si usa una bilancia di Kibble. La bilancia, idealmente, funziona nel modo seguente. Su un piatto si mette la massa da misurare. Per effetto del peso il piatto subisce una forza d’intensità mg. Sull’altro si trova, disposto in modo da giacere sul piano orizzontale, una bobina di filo conduttore di lunghezza ℓ che è posta in un campo magnetico radiale B. Se si fa circolare una corrente I nella bobina, questa subisce una forza diretta verticalmente di modulo BIℓ. Se la forza dovuta all’interazione tra campo magnetico e filo è verticale e con verso opposto a quella di gravità si ha che

mg = BIℓ

da cui si ricava m. In alternativa si può misurare la fem che si misura ai capi della stessa bobina quando questa si muove verticalmente con velocità v nello stesso campo magnetico B. In questo caso la Legge di Faraday-Neumann prevede che la fem sia uguale alla variazione di flusso del campo magnetico che attraversa la bobina. Idealizzando la bobina come una spira circolare, cadendo questa descrive un cilindro la cui superficie laterale è l’unica attraversata (perpendicolarmente) dal campo magnetico. Il flusso del campo è dunque

Φ = BS = Bℓh = Bℓvt

Di conseguenza la sua variazione nell’unità di tempo vale

V = ΔΦ/Δt = Bℓv

da cui si ricava che il prodotto Bℓ vale V/v, con V che è uguale alla tensione che si misura ai capi della bobina mentre si muove. Possiamo cosé eliminare il prodotto Bℓ alla prima relazione e ottenere

mgv = IV

Nella pratica la misura di I e di V è effettuata attraverso dispositivi quantistici (a effetto Josephson) che permettono misure molto accurate perché i valori di corrente e di tensione che si misurano sono quantizzati. Resta il problema di determinare con precisione g e v. Queste misure sono affidate a interferometri laser che misurano lo spostarsi delle frange d’interferenza prodotta dalla luce riflessa da uno specchio montato sulla bobina o su un dispositivo lasciato cadere per misurare con precisione l’accelerazione di gravità (gravitometro).

Una serata al Bar Europa

Venerdì 9 novembre 2018 sono stato invitato al “Bar Europa“: una rubrica culturale all’interno del programma Rock Night Show di DJ Drago, su Radio Godot, condotta da Michele Gerace. Bar Europa è uno spazio di discussione, una comunità, che ambisce a promuovere il senso di appartenenza all’Europa e lo fa attraverso la promozione di iniziative culturali complesse, nel senso che mescola discipline tra loro diverse per evidenziare come le differenze non siano da temere, come qualcuno vuol far credere, ma siano una ricchezza.

Puoi rivedere la puntata (o meglio la porzione che è stata registrata) qui

Questo post termina con l’augurio che conclude le puntate della rubrica: Viva l’Europa!

Pubblicato il bando per una nuova edizione della Scuola di Fisica con Arduino e Smartphone

È stato pubblicato all’indirizzo https://www.uniroma1.it/it/offerta-formativa/corso-di-alta-formazione/2019/fisica-con-arduino-e-smartphone il bando per la partecipazione alla III edizione della Scuola di Fisica con Arduino e Smartphone di Sapienza.

La scuola è un’attività full time intensiva di tre giorni destinata agli insegnanti di matematica e fisica o aspiranti tali. Non ci sono prerequisiti: non è necessario saper programmare o avere competenze di elettronica per partecipare. L’esperienza delle prime due edizioni ha dimostrato che un insegnante completamente digiuno di programmazione si può trasformare in un vero e proprio maker in soli tre giorni!

20170907_144943-collageIl primo giorno insegneremo a programmare una scheda Arduino e chiederemo agli insegnanti di pensare a un esperimento che vorrebbero realizzare nella loro classe. Il secondo giorno porteremo gli insegnanti ad acquistare il materiale necessario (il budget è volutamente ridotto a 20 euro ciascuno per consentire l’esecuzione di misure precise e accurate con una spesa minima) e li assisteremo nella realizzazione pratica della loro idea. Il terzo giorno l’esperimento sarà condotto e illustrato.

È un’esperienza coinvolgente ed estremamente utile per acquisire quelle che oggi si chiamano soft-skills e per rendere l’insegnamento della fisica appetibile anche agli studenti meno motivati.

La partecipazione alla scuola è pagabile con la carta docente per gli insegnanti in servizio. Altre informazioni alle pagine dedicate del PLS-Fisica di Sapienza.

Esperimenti radioattivi

Con il simulatore di Geiger presentato nell’ultimo post si possono solo fare dimostrazioni qualitative circa la maniera in cui si comporta un rivelatore di particelle quando si avvicina una sorgente radioattiva. Al più si può fare una serie di misure che permettono di stabilire la legge secondo la quale il numero di conteggi per unità di tempo diminuisce col quadrato della distanza, come nel filmato.

Una serie di misure più interessanti si può seguire con il programma riportato sotto.

#define _DEBUG

#define CLIK 8
#define ECHO 2
#define TRIG 3

#define TAU 2.2414 // the decay time in minutes
#define c 340.e-6  // the speed of sound

float tau = TAU*60.;
unsigned long t0;

void setup() {
  pinMode(CLIK, OUTPUT);
  pinMode(ECHO, INPUT);
  pinMode(TRIG, OUTPUT);
  digitalWrite(TRIG, LOW);
  digitalWrite(CLIK, LOW);
  t0 = millis();
#ifdef _DEBUG
  Serial.begin(9600);
  Serial.print("============ tau = ");
  Serial.print(tau);
  Serial.println(" s");
#endif
}

void trigger() {
  /* trigger the sensor */
  digitalWrite(TRIG, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG, LOW);
}

float measure() {
  /* measure the distance between the sensor and the obstacle */
  float d = 0.;
  for (int i = 0; i < 15; i++) {
    trigger();
    unsigned long T = pulseIn(ECHO, HIGH);
    d += c*T/2.;
  }
  return d;
}

int status = HIGH; // the current status of the relay

void loop() {
  /* measure distance and time */
  float d = measure();
  float t = (millis() - t0)*1.e-3;
  /* compute the probability of a decay */
  float Pdecay = exp(-t/tau);
  float f = (float)random(1000)/1000.;
  /* if an atom decay... */
  if (f < Pdecay) {
    /* ...detect it with a probability that depens on d */
    unsigned long trigger = 10000./(d*d); 
    unsigned long r = random(10000);
    if (r < trigger) {
      digitalWrite(CLIK, status);
#ifdef _DEBUG
      Serial.println(t);
#endif
      if (status == HIGH) {
        status = LOW;
      } else {
        status = HIGH;
      }
    }
  }
}

Il programma è solo apparentemente complicato. La costante definita alla linea

#define TAU 2.2414

rappresenta il tempo di vita medio, espresso in minuti, di una ipotetica sostanza radioattiva (in questo caso dell’Alluminio 28: quello ottenuto da Enrico Fermi nei suoi esperimenti sulla radioattività artificiale).

Con questa versione dello sketch di Arduino i click si susseguono con una probabilità che diminuisce esponenzialmente con un tempo caratteristico TAU.

A questo punto simulare una misura è facile. Si avvicina, a un’opportuna distanza, la presunta sostanza radioattiva e si contano i click che si odono nell’unità di tempo. Per esempio, si possono contare i click ogni 20 o 30 secondi, avendo cura di porre la sorgente a una distanza tale da avere un numero statisticamente significativo di click in questo intervallo di tempo (all’inizio delle misure questo numero dovrebbe essere almeno attorno a 80-100). Dividendo il numero di click N per l’intervallo di tempo T si ottiene la frequenza dei conteggi N/T. Si ripete la misura a tempi successivi e si osserva che il rapporto N/T non è costante, ma diminuisce col tempo. Se si fa un grafico di N/T (o semplicemente di N) in funzione del tempo si ottiene la figura sotto riportata:

Fermi_Al

La figura include il “fit” ai dati sperimentali eseguito con un esponenziale. Per ottenere una prima stima del tempo di decadimento senza dover eseguire un complesso fit con un esponenziale si può riportare il logaritmo del numero di conteggi in funzione del tempo, il che darà al grafico l’aspetto di una retta, di cui basta misurare la pendenza. Oppure si può, per tempi relativamente piccoli, approssimare l’esponenziale con una retta

N·exp(-t/τ)≈N(1-t/τ).

Le misure fluttuano in maniera statistica, quindi si ha l’impressione di fare una vera misura e s’impara a gestire gli errori sistematici e statistici in modo corretto. Conoscendo il tempo di vita impostato si può confrontare il valore ottenuto con quello atteso per valutare la bontà delle misure eseguite.

 

Un simulatore di Geiger

Dovendo fare una conferenza divulgativa sugli esperimenti che hanno fruttato il Premio Nobel a Enrico Fermi, nell’ottantesimo della sua attribuzione, ho deciso che avrei dovuto ripetere alcuni dei suoi fondamentali esperimenti in aula, in modo da spiegare bene quali furono le misure e i risultati che condussero il grande scienziato ad annunciare la scoperta del metodo per rendere radioattivi i materiali.

Fare esperimenti con materiali radioattivi in aula, però, non è solo vietato. È quanto meno inopportuno. Allora ho deciso che mi sarei avvalso di una simulazione: ma non di una “classica” simulazione al computer, bensì di una simulazione “concreta”.

Avevo bisogno di far vedere cosa succede quando si avvicina una sorgente radioattiva a un contatore Geiger. Ho quindi costruito un finto contatore Geiger usando una scheda Arduino, un sensore ultrasonico e un relay.

IMG_20180514_093515.jpg

Il sensore ultrasonico richiede quattro collegamenti: due servono per alimentarlo (GND e 5V), uno per il cosiddetto trigger e l’altro per l’eco. Inviando un impulso rettangolare abbastanza lungo (10 μs) al pin di trigger, il sensore ultrasonico emette un treno d’impulsi ad alta frequenza e misura il tempo che intercorre tra l’invio e la successiva rivelazione dello stesso treno d’impulsi. La rivelazione avviene quando gli impulsi sono riflessi da un ostacolo. Questo tempo è tanto più lungo quanto maggiore è la distanza tra il sensore e l’ostacolo.

Il relay è stato invece collegato a un terzo pin (oltre ai due necessari per l’alimentazione).

Tutto il sistema è stato alloggiato dentro un tubo di cartone (di quelli attorno ai quali è avvolta la carta da cucina) in modo tale che l’altoparlante e il microfono del sensore ultrasonico sporgessero lungo la superficie laterale a un estremo del tubo.

Il finto Geiger misura continuamente la distanza alla quale si trova un eventuale ostacolo e definisce una variabile trigger che dipende dalla distanza misurata al quadrato:

 unsigned long trigger = 1000./(d*d);

Quindi genera un numero random compreso tra 0 e 1000:

 unsigned long r = random(1000);

Se questo numero è minore di trigger fa cambiare stato del relay da chiuso ad aperto o viceversa:

if (r < trigger) {
  digitalWrite(CLIK, status);
  if (status == HIGH) {
    status = LOW;
  } else {
    status = HIGH;
  }
}

Il relay, cambiando stato, produce un rumorino che imita il click di un vero Geiger. Con questo codice la probabilità di far scattare il relay aumenta al diminuire della distanza di un ostacolo come 1/r2. Se l’ostacolo è molto lontano la probabilità di un click tende a zero. Avvicinando qualsiasi oggetto (radioattivo o meno) il numero di click per unità di tempo aumenta sempre di più esattamente come ci si aspetta nel caso reale. Per simulare ciò che avviene quando si avvicina una sostanza non radioattiva è sufficiente manipolare il campione in modo tale da avvicinarlo al Geiger senza metterlo di fronte al sensore ultrasonico.