La bellezza salverà la fisica

Parafrasando la celebre massima di Dostoevskij (o forse, meglio, del suo “idiota”), in questo post discutiamo il ruolo della bellezza delle equazioni della fisica.


Sì, lo so. Non tutte le leggi della fisica sono belle e molti lettori potrebbero non essere d’accordo con una tale affermazione. Tuttavia, dubito che la maggior parte di coloro che mi seguono abbiano da ridire su questo, perciò assumerò che praticamente tutti la pensino così: le equazioni della fisica sono indubbiamente molto belle. Non è un caso che artisti come Andrea Galvani ne abbiano fatto uno strumento della propria poetica.

Andrea Galvani © The Subtleties of Elevated Things_ARCOmadrid 2019.jpg
Andrea Galvani: la sottigliezza delle cose elevate

Molti scienziati, in effetti, credono in quello che io chiamo “l’argomento della bellezza”, che ha portato il premio Nobel Richard Feynman ad affermare che

Non importa quanto sia bella la tua ipotesi; non importa quanto sei intelligente, o come ti chiami. Se la tua teoria non va d’accordo con i dati sperimentali… è sbagliata“.

L’argomento della bellezza consiste nel credere che la Natura debba essere descritta da equazioni “belle”. Sono portato a credere che una tale convinzione si debba far risalire a un’intervista rilasciata da Paul Dirac a Thomas Kuhn e Eugene Wigner in cui uno dei fondatori della meccanica quantistica dice

[L’idea dello spin] è scaturita effettivamente solo grazie alle manipolazioni delle equazioni che stavo studiando; non stavo cercando di introdurre idee fisicamente plausibili. Gran parte del mio lavoro del resto consiste nel lavorare con le equazioni per vedere cosa se ne può ricavare. La seconda quantizzazione, per esempio, è nata così. Non credo che questo abbia senso per gli altri fisici; penso sia una mia peculiarità il fatto che mi piace lavorare con le equazioni, soltanto alla ricerca di relazioni matematiche interessanti che magari non hanno alcun significato fisico. Succede, però, che a volte ce l’hanno“.

Inoltre, in un articolo scritto nel 1982 [Pretty mathematics. Int J Theor Phys 21, 603-605 (1982)], Dirac ha scritto

Una delle caratteristiche fondamentali della natura sembra essere che le leggi fisiche fondamentali sono descritte in termini di una teoria matematica di grande bellezza e potenza. Potremmo forse descrivere la situazione dicendo che Dio è un matematico sopraffino, cui è piaciuto usare una matematica molto avanzata nella costruzione dell’universo. A me sembra che se si lavora allo scopo di perseguire la bellezza nelle proprie equazioni, con una buona intuizione, si è di sicuro sulla buona strada“.

In effetti, la bellezza emerge semplicemente perché la matematica è un linguaggio molto flessibile per il quale un matematico esperto può inventare nuove parole e nuove regole grammaticali, tali che ciò che appariva brutto in una lingua diventi bello in un’altra. Uno degli esempi più sorprendenti è l’insieme delle equazioni di Maxwell. Le si può vedere nella loro forma originale in molte edizioni digitalizzate del “Trattato” come questa (pagg. 259-262/515). Dubito che riuscirete a individuarle… infatti le equazioni di Maxwell sono state riformulate nella forma che usiamo oggi da Oliver Heaviside che ha usato un nuovo linguaggio con una nuova sintassi per riscriverle in una forma che sembra decisamente più bella.

La bellezza, tuttavia, in matematica non è fine a sé stessa e il suo perseguimento un ruolo ce l’ha eccome. Serve a far emergere più chiaramente il significato delle equazioni e a semplificare la derivazione di nuovi risultati dalle loro manipolazioni. Spesso, una forma più sintetica, getta molta più luce su un argomento rispetto a una forma più pletorica. Potremmo in effetti paragonare una bella equazione matematica a una poesia, mentre una forma più esplicita della stessa equazione si potrebbe paragonare alla prosa.

Considerate, per esempio, questo celebre passo:

Quel ramo del lago di Como, che volge a mezzogiorno, tra due catene non interrotte di monti, tutto a seni e a golfi, a seconda dello sporgere e del rientrare di quelli, vien, quasi a un tratto, a ristringersi, e a prender corso e figura di fiume, tra un promontorio a destra, e un’ampia costiera dall’altra parte; e il ponte, che ivi congiunge le due rive, par che renda ancor più sensibile all’occhio questa trasformazione, e segni il punto in cui il lago cessa, e l’Adda rincomincia, per ripigliar poi nome di lago dove le rive, allontanandosi di nuovo, lascian l’acqua distendersi e rallentarsi in nuovi golfi e in nuovi seni

Pare quasi di vederlo, il lago, con le sue montagne che vi si tuffano dentro disegnando una costa sinuosa e quasi sensuale. Ma confrontiamo questa sia pur magistrale scena con quella descritta da un haiku giapponese di Yosa Buson, un poeta del 1700:

Che luna! il ladro si ferma per cantare

In queste poche sillabe si vede molto più della luna: si vede in realtà tutta la scena, con il ladro nell’oscurità che guarda con ammirazione la luna; si vedono le stelle, la vegetazione, e tutto il resto. Ma non solo. Si possono perfino quasi sentire gli odori, udire gli animali notturni, percepire il freddo e l’umidità, la paura del ladro di essere scoperto.

Nella scienza, come nelle arti (un argomento simile si applica ai dipinti: vedi il quadro di Mark Rothko riportato sotto), la semplificazione consiste nella sottrazione di quanto non è necessario per trasmettere quanto più contenuto possibile. Il risultato di questo lavoro è spesso più complesso del prodotto iniziale, pur apparendo più chiaro e denso di significato. Di conseguenza, il risultato finale è più adatto a suggerire nuove interpretazioni e ulteriori sviluppi.

Mark Rothko’s no. 14: foto di Naotame Murayama su Flickr

Ecco perché le equazioni fisiche sono belle: spesso i fisici seguono inconsciamente questa regola, ma di fatto lo fanno. La capacità di apprezzare la bellezza è qualcosa che dovremmo insegnare a tutti i nostri studenti che non meritano di essere formati solo dal punto di vista puramente tecnico. Sogno (e forse quest’anno mi riuscirà) di poter integrare le mie lezioni di fisica con il punto di vista di un artista, mentre, dall’altro lato, studenti di arte visitano una galleria o un museo accompagnati da uno scienziato che fa loro da guida e interpreta, a suo modo, le opere esposte.

Una serata al Bar Europa

Venerdì 9 novembre 2018 sono stato invitato al “Bar Europa“: una rubrica culturale all’interno del programma Rock Night Show di DJ Drago, su Radio Godot, condotta da Michele Gerace. Bar Europa è uno spazio di discussione, una comunità, che ambisce a promuovere il senso di appartenenza all’Europa e lo fa attraverso la promozione di iniziative culturali complesse, nel senso che mescola discipline tra loro diverse per evidenziare come le differenze non siano da temere, come qualcuno vuol far credere, ma siano una ricchezza.

Puoi rivedere la puntata (o meglio la porzione che è stata registrata) qui

Questo post termina con l’augurio che conclude le puntate della rubrica: Viva l’Europa!

Arte e scienza

Sono stato a Venezia per la Conferenza dell’EPS (European Physical Society) a presentare le mie idee sulla maniera di spiegare il meccanismo di Higgs e la meccanica quantistica, in generale, agli studenti delle scuole superiori. In una pausa, avendo già visitato Venezia in altra occasione, ho pensato di fare un giro in posti non troppo turistici e sono andato a vedere la Scala Contarini del Bovolo: un bell’esempio di architettura tardo gotica.

Casualmente scopro che presso la scala è in corso una mostra di opere di Pablo Echaurren dal titolo “Du champ magnétique“, che evidentemente risuona col mio mestiere di fisico. Ma le coincidenze non finiscono qui. Il titolo allude, oltre che al campo magnetico, al nome di Marcel Duchamp, autore di una celebre opera intitolata Fontana, di cui ne è conservato un esemplare presso la Galleria Nazionale d’Arte Moderna di Roma. L’opera in questione è in realtà un orinatoio, di cui si trovano le tracce in un’opera esposta nella mostra di Echaurren.

IMG_20170709_110906

La cosa è interessante perché le mie lezioni di fisica iniziano con la proiezione in aula dell’immagine della Fontana di Duchamp e la richiesta agli studenti di dire di cosa si tratta. Dopo le prime risposte accompagnate da risate li informo che si tratta di un’opera d’arte che molti di loro hanno giudicato, per dirla con Fantozzi, una cagata pazzesca, ma che io invito ad andare a vedere.

Il fatto è che quella che molti giudicano una cagata (sebbene la funzione originale dell’oggetto illustrato sia un’altra), per alcuni è un’opera d’arte e non c’è modo di mettere d’accordo tutti su una questione di questo genere. L’arte, infatti, non si misura: non esiste uno strumento che misuri l’arte. Esistono invece strumenti che misurano temperature, masse, correnti elettriche, etc.. È per questo motivo che il calore, il peso, i circuiti elettrici sono argomenti trattabili da un fisico, mentre l’arte, la religione, la bellezza, l’amore non lo sono. Per un fisico esiste solo ciò che si può misurare. Intendiamoci: è ovvio che esiste l’amore, la bellezza, le ambizioni, i sogni, etc., ma tutte queste cose non possono essere d’interesse professionale per un fisico.

Oltre all’ossessione per Duchamp che si manifesta nella mostra, ci sono altre opere chiaramente ispirate dalla scienza e in particolare dalla fisica, come quelle qui sotto.

Quelle con le strisce di carta possono sembrare del tutto estranee al tema, ma non se se ne conoscono i titoli che sono “Per prendere le misure” e “La misurazione del caso“. E in effetti uno dei primi problemi che un fisico affronta è quello della misura per la quale deve costruire un campione. Il campione è arbitrario e uno dei primi campioni che usiamo nel mio corso è proprio una striscia di carta, salvo poi rendersi conto che presenta alcuni evidenti problemi per cui bisogna abbandonarlo in favore di campioni più solidi.

 

La Fisica e le Arti Digitali

Si avvia alla conclusione il Media Art Festival di Roma, al MAXXI dal 27 al 29 aprile: un’iniziativa della Fondazione Mondo Digitale che insieme a numerosi partner promuove il ruolo degli artisti digitali come changemakers. In questa edizione il Dipartimento di Fisica di Sapienza ha partecipato con un progetto da me coordinato dal titolo “Il Carbon Footprint attraverso le arti digitali” nel corso del quale tre artisti (Elena Bellantoni, Matteo Nasini e Mariagrazia Pontorno) hanno realizzato, insieme agli studenti di sei scuole altrettante opere. Nel progetto la componente artistica e quella scientifica hanno lavorato per realizzare progetti volti a sensibilizzare gli studenti su importanti temi che riguardano tutti, come il riscaldamento globale, attraverso un approccio che fosse al tempo stesso scientificamente rigoroso e artisticamente valido, grazie anche alla collaborazione di Massimo Margotti, che ha seguito il lavoro degli artisti da molto vicino.

Rimando al sito della manifestazione per tutti i dettagli, ma voglio qui dare una mia personale interpretazione dell’opera degli artisti. Un’interpretazione da fisico che forse non coincide con quella degli autori, ma l’arte ha questo di bello: che si possono avere opinioni e interpretazioni diverse delle opere senza che questo conduca a uno scontro o a dissentire l’uno dall’altro. Tutte le interpretazioni sono valide e legittime ed è in questo (e forse solo in questo) che la scienza si differenzia dall’arte.

Cominciamo con l’opera (Black Flower) di Mariagrazia Pontorno, che ha messo un altoparlante nel fuoco di una parabola specchiante del 1820 custodita, assieme alla sua gemella, nel Museo di Fisica che ho l’onore di dirigere. L’altoparlante diffonde una canzone il cui testo è stato elaborato dagli studenti usando le parole chiave del tema del Carbon Footprint in direzione della parabola. La parabola riflette il suono dirigendolo verso la sua gemella che lo concentra nuovamente nel suo fuoco. Il significato che io do a quest’opera è questo: un fenomeno prodotto in un punto dello spazio (il suono dell’altoparlante), mediato e trasportato dall’interazione con altri mezzi (le parabole) produce un fenomeno a distanza (la percezione del suono nel fuoco della seconda parabola) che solo apparentemente non ha una relazione diretta con la sua causa. Come accade con il riscaldamento globale che appare ai più avere poco o nulla a che fare con i nostri comportamenti che, al contrario, potrebbero essere determinanti per il suo progredire.

Vale qui la pena di ricordare che nessuno di noi ha mai veicolato la tesi secondo la quale il riscaldamento globale sia con certezza causato dall’immissione di anidride carbonica in atmosfera e che questa sia per lo più di origine antropica. Ci siamo limitati a constatare dei fatti: fatti sperimentali. Da questi si possono ricavare modelli che sono più o meno credibili. Esiste certamente una correlazione tra temperatura media del pianeta e percentuale di anidride carbonica presente, così come esiste una correlazione tra attività umane e quantità di anidride carbonica prodotta. Abbiamo solo riflettuto su questo, senza fornire tesi preconfezionate, perché la scienza non ha mai risposte certe, ma solo risposte plausibili, ottenute dall’analisi dei fatti sperimentali. Sono gli avversari della scienza che, al contrario, sono sempre certi delle loro affermazioni, come coloro che sostengono che l’uso dei vaccini sia da sconsigliare.

L’opera di Matteo Nasini (Ricreazione Termica) consiste di un contenitore riempito di fumo che funge da schermo per la proiezione di un filmato girato con una termocamera a infrarossi. La termocamera rende visibile il calore prodotto dai corpi e da ciò che li circonda, e il fumo, evanescente e impalpabile, rende concreta questa visione. Il calore è il tema ricorrente nel caso del problema del Carbon Footprint, e l’anidride carbonica, che appare invisibile ed evanescente, lo rende tristemente percepibile e concreto, come il fumo di Nasini.

Elena Bellantoni invece ha realizzato un filmato (Metronìmia) nel quale studenti della scuola agiscono come un sistema complesso che si auto-organizza per far apparire configurazioni non banali, accompagnati dal suono di metronomi che, grazie a fenomeni di risonanza, iniziano spontaneamente a oscillare in fase, anche se inizialmente azionati in modo casuale. L’opera rappresenta quel che accade in atmosfera dove la somma di impercettibili, ma numerosi, fenomeni, attraverso deboli interazioni che ne esaltano gli effetti, dànno luogo a conseguenze rilevanti dal punto di vista della nostra sopravvivenza.

Di sicuro chi avrà avuto la fortuna di lavorare a queste opere o di parlarne con noi e gli autori, d’ora in poi percepirà le parole della scienza (risonanza, interazione, calore, fenomeni ondulatori,…) con una consapevolezza diversa, e non come fini a sé stesse.

http://carbonfootprint.mondodigitale.org/

Scienza e Arte nell’Anno della Luce

Dal 5 marzo al 21 giugno alle Scuderie del Quirinale c’è una mostra di opere di Matisse. Ne sono venuto a conoscenza grazie alla pubblicità esposta un un autobus in servizio che mi precedeva mentre tornavo a casa dal lavoro (vedi foto). La DSC_0433pubblicità mi ha subito colpito per un particolare. Per capire perché è necessario sapere che nel mio ruolo di Delegato alla Comunicazione Scientifica della Facoltà di Scienze di Sapienza Università di Roma, sto curando una mostra, che dovrebbe inaugurarsi a fine settembre, sul tema della luce, in occasione della proclamazione del 2015 come Anno Internazionale della Luce.

Quello che mi ha colpito della pubblicità è il quadro in essa riprodotto: “i pesci rossi”, realizzato nel 1911. Nel quadro Matisse dipinge una vasca con quattro pesci rossi che non si vedono solo attraverso le pareti trasparenti del vaso che li contiene, ma anche attraverso la superficie libera dell’acqua, cioè da sopra (vedi figura a destra). Di sicuro abbiamo avuto piú volte quest’esperienza che consiste nel vedere due immagini dello stesso soggetto.

matisse pesci rossiLa spiegazione del fenomeno è data dalla rifrazione che la luce subisce provenendo dai pesci e passando attraverso le pareti del recipiente dall’acqua ai nostri occhi, ma anche dagli stessi pesci agli occhi attraversando la superficie libera dell’acqua. I due percorsi sono diversi e diverso è l’angolo del quale sono deviati i raggi luminosi, ma hanno la caratteristica di partire da uno stesso punto e di raggiungere entrambi i nostri occhi facendoci percepire due immagini dello stesso soggetto.

È lo stesso fenomeno che mi permette di sorprendere i bambini delle primarie ai quali propongo il seguente esperimento: metto una moneta da due euro sul fondo di una ciotola dalle pareti opache posta al centro d’un banco. Li faccio quindi disporre in circolo attorno alla ciotola e chiedo loro di allontanarsi fino a quando non riescono piú a vedere la moneta. A questo punto verso acqua nella ciotola e magicamente la moneta riappare. A questo punto basta chiedere ai bambini di spiegare perché per far partire un’interessante dibattito scientifico che di solito giunge alla spiegazione corretta abbastanza rapidamente.

Suggerisco ai miei colleghi insegnanti di prepararsi, in occasione dell’Anno della Luce, una lezione integrata di geometria (in particolare di geometria analitica), ottica e arte: i vostri studenti non dimenticheranno piú le Leggi della rifrazione e l’opera di Matisse e di altri pittori che hanno riprodotto situazioni simili.

Di certo ancora una volta si dimostra, se mai ce ne fosse bisogno, che arte e scienza sono tra loro strettamente legate e che, al contrario di quanto pensano in troppi, non è affatto vero che le spiegazioni scientifiche distruggono la poesia di certe manifestazioni della Natura o dell’arte: semmai è vero il contrario! È proprio la possibilità di spiegare razionalmente certi fatti che li rende ancor piú affascinanti. Che meraviglia ci sarebbe se un fenomeno fosse opera di un mago o di qualcosa di soprannaturale? L’abilità di un prestigiatore desta certamente piú ammirazione della constatazione del possesso di poteri magici. Allo stesso modo la spiegazione scientifica di un fenomeno che induce sentimenti di stupore e meraviglia non fa che rafforzare questi sentimenti, dal momento che se ne possono godere tutti, ma proprio tutti, gli aspetti.

Solo chi conosce la fisica di un tramonto può apprezzarne fino in fondo la bellezza, e solo uno sciocco può pensare che la conoscenza dei fenomeni che permettono alla luce del Sole di produrre un tale meraviglia la renda arida e meno godibile di chi non la conosce.