Per un nuovo modo d’insegnare la meccanica quantistica

episodio 4: la fisica quantistica dei campi

La dualità onda-corpuscolo è, a mio parere, il concetto più sbagliato introdotto con la meccanica quantistica, nonostante sia molto diffuso. È del tutto normale che nella scienza si formulino concetti che, alla fine, si rivelano fallaci. È però sbagliato continuare ad usarli inutilmente. La dualità fu introdotta all’inizio dello sviluppo della MQ per spiegare fenomeni nuovi utilizzando categorie del secolo precedente. Oggi la nostra visione del mondo è cambiata e non c’è bisogno di insistere nel proporre spiegazioni vecchio stile. D’altra parte, nessuno di noi oggi insiste nel cercare di spiegare la relatività supponendo l’esistenza di un etere.

In questo post cerchiamo di descrivere al meglio la natura di un elettrone.


Nell’articolo precedente abbiamo mostrato che un fascio di elettroni si può naturalmente interpretare come composto di un’onda che si propaga nello spazio e nel tempo. L’onda deve avere una certa carica elettrica, essendo soggetta alla forza di Lorentz. Tuttavia, qual è la natura di una tale onda? E cosa significa per un’onda essere caricata elettricamente?

Secondo la teoria ormai consolidata, la luce si propaga come un’onda elettromagnetica, quest’ultima essendo una successione di campi elettrici e magnetici, come descritto dalle equazioni di Maxwell. Vale la pena ricordare che, prima delle opere di Maxwell e di Einstein, i fisici sapevano già che la luce era un’onda, ma poiché erano abituati a vedere le onde propagarsi nei mezzi, supponevano (erroneamente) che dovesse esistere un mezzo attraverso il quale la luce dovesse essere in grado di propagarsi. Solo in seguito fu chiaro che la luce poteva propagarsi nel vuoto perché il campo elettromagnetico si propaga nel vuoto; e solo con la relatività speciale di Einstein fu chiaro che non era necessario alcun mezzo per rendere conto della sua propagazione a velocità costante. Le onde, quindi, hanno perso la loro natura “classica” di perturbazioni che si propagano nei mezzi: le onde possono essere “composte di” campi (e non propagarsi attraverso essi). Il campo e.m. è neutro perché la sua propagazione non è influenzata dalla presenza di altri campi e.m. (i campi possono interferire, ma il modo di propagarsi di un campo è indipendente dagli altri).

Come nel caso della definizione dello stato, è abbastanza difficile trovare una definizione di campo nei libri di fisica. Molti di essi non lo definiscono affatto: si limitano a fornire un elenco (spesso incompleto) delle sue caratteristiche. Il concetto di campo è solitamente introdotto nell’elettrostatica e si dice che è generato dalle cariche ed è definito come la forza per unità di carica esercitata dalla sua sorgente. Una tale definizione, si converrà, non implica alcun “contenuto” fisico per quest’entità: non implica affatto che il campo esista indipendentemente dalla forza di Coulomb. Si tratta solo di una definizione matematica (neanche operativa, perché non è così che si misura il campo).

Comunque la fisica non è matematica, e una definizione precisa, formale, delle grandezze fisiche è sì spesso difficile, ma, del resto, anche inutile in molti casi. Ciò che è importante, per definire una grandezza fisica, è poterla misurare e identificarne le proprietà. Analizziamo quindi una teoria di campo.

  1. Una teoria di campo (come l’elettromagnetismo) è una formulazione matematica della dinamica dei campi. Dato lo stato di un campo al tempo t=0, la teoria ce lo fornisce in qualsiasi altro istante t≠0. Il campo elettrico in un’onda e.m., per esempio, è descritto da E(t,x)=Acos(⍵t+kx+φ).
  2. Dato lo stato delle sorgenti, la teoria permette il calcolo del campo da esse generato. Ad esempio, la teoria di Maxwell permette di calcolare il campo magnetico prodotto da una corrente e il campo elettrico prodotto da un piano uniformemente carico.

Elenchiamo ora le proprietà rilevanti di un campo (quelle che le rendono diverse dalle particelle).

  1. I campi si propagano nello spazio e nel tempo.
  2. I campi sono generati dalle sorgenti. Non esistono né prima né all’interno di essi.
  3. A differenza della “materia” i campi possono si possono creare o distruggere.

Secondo le equazioni di Maxwell, le onde elettromagnetiche sono una successione di campi elettrici e magnetici: una corrente variabile che scorre in un conduttore genera un campo magnetico variabile che a sua volta genera un campo elettrico variabile che genera un campo magnetico e così via, come mostrato di seguito.

Un’onda e.m. è una successione di campi elettrici e magnetici che si propagano

A un certo punto si scopre che la luce può dare origine a fenomeni che si possono spiegare solo ammettendo che sia composta da particelle chiamate fotoni: l’effetto fotoelettrico, l’effetto Compton e la radiazione di un corpo nero si spiegano solo attribuendo una natura corpuscolare alla luce. Chiaramente i due modelli (quello corpuscolare e quello ondulatorio) sono incompatibili.

D’altra parte, un’onda e.m. emessa da un’antenna (un filo in cui scorre una corrente alternata) si può interpretare come un flusso di fotoni irradiati dalla corrente in tutte le direzioni perpendicolari al filo. Mettendo un rivelatore vicino all’antenna possiamo misurare un campo elettrico o magnetico. Tuttavia, se la frequenza dell’onda e.m. è sufficientemente grande, possiamo osservare l’effetto fotoelettrico, che interpretiamo come la collisione di un fotone con un elettrone atomico. I fotoni, come i campi e.m., sono dunque prodotti anch’essi dalla corrente. È utile osservare che le proprietà dei campi e di una teoria di campo, che abbiamo elencato sopra, valgono anche per i fotoni: basta sostituire la parola “fotone” con “campo”. Di conseguenza, un fotone È un campo, qualunque cosa questo significhi (rimandiamo la discussione su cosa questo significhi esattamente a un post successivo: la vita è dura).

Qualunque cosa significhi, quest’osservazione ci fa capire che la luce non è né una particella un’onda: è qualcos’altro che chiameremo campo. Continuare a parlare della dualità onda-corpuscolo è completamente fuorviante¹.

Consideriamo ora i decadimenti beta che consistono nella trasformazione (decadimento) di un neutrone in un protone, con l’emissione di un elettrone e di un neutrino. Il processo è ben descritto dalla teoria delle interazioni deboli. Si noti che neutroni e protoni si distinguono per la loro carica elettrica, alla quale l’interazione debole è cieca. Per essa, quindi, protoni e neutroni sono la stessa particella. Possiamo descrivere il processo come segue:

Il decadimento beta è un processo che consiste nell’emissione di un campo di elettroni e uno di neutrino da parte di una “corrente debole”.

La transizione tra un neutrone e un protone è un cambiamento di stato, come la transizione da i(0) a i(t) di una corrente è un cambiamento di stato della corrente. Il cambiamento di stato dev’essere accompagnato (per la conservazione dell’energia) dall’emissione di uno o più campi. Nell’immagine le linee rosse rappresentano un “campo di elettroni“, mentre quelle blu un “campo di neutrini“. Questi campi non sono campi vettoriali come i campi e.m. e, contrariamente a questi ultimi, non generano altri campi, per cui quando un campo di elettroni si propaga da x(0) a x(t) si trova in x(t) ma non in x(0).

Vediamo se le caratteristiche dei campi e le teorie di campo sopra elencate si applicano ai campi di elettroni e di neutrini. Li chiameremo collettivamente “campi fermionici”.

  1. La teoria quantistica dei campi è costituita di equazioni che permettono di prevedere lo stato di un campo fermionico, noto il suo stato a t=0. In particolare, l’equazione di Dirac descrive la propagazione di un campo libero, in modo simile a quanto fanno le equazioni di Maxwell per i campi e.m.
  2. La sorgente del campo fermionico è, nella teoria di cui sopra, la “corrente debole“. Lo stato dei campi fermionici si può prevedere dalla teoria, se conosciamo lo stato iniziale del neutrone e lo stato finale del protone, proprio come la teoria e.m. dà lo stato dei campi, conoscendo lo stato delle sorgenti in tempi diversi. Si noti che prevedere lo stato di un campo non significa prevedere dove si può trovare una particella, giacché in meccanica quantistica questo non ha senso (vedi episodio 1). Significa essere in grado di prevedere la distribuzione dell’energia dei campi fermionici.

Inoltre, i campi hanno le seguenti proprietà.

  1. I campi fermionici si propagano, chiaramente, nello spazio e nel tempo.
  2. Sono generati da una sorgente: in questo caso la sorgente è la corrente debole. È impossibile creare i campi dal vuoto: abbiamo bisogno di una sorgente. Così com’è impossibile creare un campo e.m. dal vuoto, senza una sorgente (una carica elettrica, sia essa a riposo o in movimento).
  3. I campi fermionici si creano e si distruggono: non preesistono nei nuclei radioattivi (come si pensava all’inizio del XX secolo). La creazione di un campo è un processo che rispetta tutti i principi di conservazione. Così come possono essere creati i campi possono essere distrutti (di nuovo, purché le quantità conservate siano conservate). In modo del tutto simile a quanto accade ai fotoni che possono essere creati da un’antenna e distrutti dall’effetto fotoelettrico.

Ma allora, cos’è un elettrone? Semplice: è un campo (carico, con massa). E un neutrino? Un campo (neutro). E un fotone? Un campo (neutro, senza massa). Perché dovremmo insistere a raffigurarceli come onde o particelle? Benintesi, possiamo farlo nella misura in cui trattiamo la luce con l’ottica geometrica o quella fisica: la scelta dipende dal problema da risolvere. A volte l’ottica geometrica è più semplice e vale la pena trattare la luce come un fascio di raggi, a volte non funziona e si usa la meccanica delle onde. È una mera decisione opportunistica.

Nella moderna meccanica quantistica tutto è un campo: i campi fermionici hanno spin semi-intero (lo spin è un numero quantico che si comporta come un momento angolare intrinseco); i campi bosonici, come i fotoni, hanno spin intero. Fotoni, elettroni e neutrini non sono né particelle, né onde: sono campi. Condividono tutti lo stesso comportamento attribuito a ciò che chiamiamo campo, quindi sono la stessa cosa.

L’interpretazione illustrata sopra può sembrare strana, soprattutto per le persone che sono state esposte a un formale corso di teorie quantistiche dei campi (QFT: Quantum Field Theory). Il modo in cui la QFT è insegnata oggi è molto diverso ed è divertente osservare come una reazione molto frequente da parte degli esperti è “bella la tua teoria, ma mi pare un po’ fantasiosa…non è proprio così che funziona…”, spesso accompagnata da un sorriso di leggero scherno. In realtà, il sorriso si spegne subito quando s’informa l’interlocutore che l’autore di una simile interpretazione non è il sottoscritto, bensì Enrico Fermi che nel suo articolo “Tentativo di una teoria dell’emissione dei raggi beta“² prende le mosse proprio dall’analogia l’emissione di onde e.m. da parte di una corrente e l’emissione di elettroni e neutrini da parte di quella che lui stesso battezza come una corrente debole. Oggi la definizione di corrente debole è effettivamente un po’ diversa e la maggior parte dei giovani fisici non sa nemmeno perché le chiamano “correnti”.


¹ A questo proposito suggerisco di leggere la trascrizione di una famosa lezione di Feynman (spesso usata impropriamente per impressionare la gente con la storia che è impossibile capire la MQ: in realtà, Feynman stava affermando proprio il contrario) in cui diceva “Se dico che [elettroni e fotoni] si comportano come particelle do l’impressione sbagliata; anche se dico che si comportano come onde. Si comportano in un modo tutto loro, che tecnicamente si potrebbe definire quantistico” (grazie a Peppe Liberti per aver fornito il link).

² LA RICERCA SCIENTIFICA, anno IV, vol. II, N. 12, 31 dicembre 1933

Per un nuovo modo d’insegnare la meccanica quantistica

episodio 3: la natura dei fasci di elettroni

Probabilmente il concetto più difficile della meccanica quantistica è la dualità onda-particella. Secondo la maggior parte dei libri di testo, la luce ha una duplice natura: è (si comporta come) una particella in determinate circostanze e (come) un’onda in altre condizioni. Allo stesso modo, gli elettroni sono particelle e onde allo stesso tempo. A nostro parere questa interpretazione è sbagliata ed è solo una conseguenza del modo di pensare dei fisici del passato.

In questo post cerchiamo di fornire una risposta alla domanda: di cosa è fatto un fascio di elettroni?


La maggior parte dei libri di testo riporta che gli elettroni sono minuscole particelle che orbitano intorno a un nucleo a carica positiva, il cui movimento nei conduttori è responsabile della corrente elettrica. Questo quadro è abbastanza facile da accettare e la maggior parte dei lettori non si chiede come facciamo a saperlo. Qualche scienziato ha forse osservato minuscole palline che si muovono nei conduttori quando ai loro capi è applicata una tensione? La risposta è “NO”. Tale descrizione deriva dall’interpretazione di una serie di esperimenti durante i quali nessuno ha osservato un elettrone puntiforme, se non altro perché sarebbe stato impossibile osservarlo, essendo il suo raggio più piccolo della lunghezza d’onda della luce con cui avremmo dovuto illuminarlo per vederlo¹.

Per capire cos’è un elettrone, facciamo un esperimento: puntiamo un puntatore laser su un muro e premiamo il pulsante. Quello che vedrete è solo un punto luminoso sulla parete. Se volete vedere il raggio di luce dovete soffiare un po’ di fumo lungo il suo percorso. In questo caso si può vedere chiaramente un raggio luminoso rettilineo che lascia il puntatore laser e colpisce la parete.

La luce del fascio si vede solo con il fumo, perché la luce laser va dritta verso il muro e non può raggiungere l’occhio: per questo non si vede. Quando si soffia il fumo nella regione attraversata dalla luce, una parte di essa interagisce con le particelle di fumo e ne è deviata, in parte, verso gli occhi. La luce che vedete non è quella rivolta verso il muro: è la luce che è stata deviata dalla sua traiettoria interagendo con il fumo.

Se ci pensate un attimo, anche quando si guardano studenti e studentesse in una classe, non li si vede: si vede la luce dell’ambiente diffusa dalla loro superficie che raggiunge i nostri occhi. Se non ne siete convinti, basta spegnere la luce e chiudere le tapparelle, in modo che l’aula sia al buio. Riuscite ancora a vedere qualcuno? No, credo di no. Tuttavia, direste che gli studenti non sono lì solo perché non li vedete?

Lezione n. 1: quando vediamo qualcosa, non facciamo altro che un esperimento di diffusione usando la luce come proiettile; la luce è deviata dagli oggetti verso i nostri occhi e il nostro cervello costruisce un’immagine a partire dalla distribuzione della luce che colpisce la rètina. L’immagine, in fondo, non è che una mappa della posizione degli ostacoli.

Ripetendo l’esperimento mettendo un reticolo di diffrazione lungo il fascio di luce mostra la natura ondulatoria della luce: a valle del reticolo appare una figura d’interferenza. L’esperimento della doppia fenditura di Young è di solito considerato la dimostrazione della natura ondulatoria della luce.

Ripetiamo ora l’esperimento usando un fascio di elettroni invece di un fascio di luce. Un fascio di elettroni si ottiene riscaldando un filo all’interno di un condensatore ad alta tensione. L’alta tensione accelera le particelle elettricamente cariche, come nei tubi a raggi catodici, il cui schema è rappresentato qui di seguito.

Guardando all’interno del tubo non si vede nulla, come nel caso del raggio laser puntato sulla parete. Tuttavia, quando il raggio colpisce lo schermo fluorescente, la sua interazione con esso produce uno spot luminoso verde chiaramente visibile. Stiamo vedendo gli elettroni? Sì! Se vediamo gli studenti in un’aula osservando la luce proveniente da loro, allora vediamo gli elettroni osservando la luce proveniente dal punto in cui si trovano. Come possiamo dire che quello che stiamo guardando sono elettroni e non luce? La risposta è semplice: il raggio si può deviare con un campo magnetico. Variando l’intensità e la direzione del campo, il punto luminoso sullo schermo fluorescente si muove per effetto della forza di Lorentz. Quindi, il fascio dev’essere elettricamente carico. Questo esperimento ci dice che il fascio è fatto di particelle? Niente affatto!

Lezione n. 2: un fascio di elettroni assomiglia in tutto e per tutto a un fascio di luce. L’unica differenza è che il fascio di elettroni è elettricamente carico, perché è deviato da un campo magnetico.

Possiamo quindi eseguire un esperimento simile a quello fatto con la luce e il fumo. Riempiendo il tubo con un po’ di gas possiamo infatti vedere il fascio. Ciò che possiamo vedere, in effetti, è la luce diffusa dagli atomi del gas colpiti dal fascio di elettroni. Qui di seguito mostriamo l’immagine di un tubo catodico riempito di azoto posto in un campo magnetico uniforme.

Infine, possiamo mettere un reticolo di diffrazione lungo il percorso del fascio. In questo caso dobbiamo utilizzare un reticolo con una spaziatura tra le fenditure estremamente bassa ottenibile utilizzando, ad esempio, un cristallo di grafite. Il punto luminoso al centro dello schermo fluorescente diventa una figura di diffrazione come la seguente:

La distanza tra le frange cambia con l’energia del fascio. Dobbiamo quindi concludere che il fascio di elettroni è costituito di onde emesse dal catodo, che viaggiano all’interno del tubo. Se lo facciamo con la luce perché non con un fascio di elettroni? Le onde, in questo caso, sono elettricamente cariche (il che significa che le onde non viaggiano necessariamente lungo linee rette) e interagiscono con alcuni materiali causando l’emissione di luce.

Lezione n. 3: un fascio di elettroni si propaga come un’onda, dando origine a fenomeni di diffrazione.

D’altra parte, i microscopi elettronici utilizzano fasci di elettroni così come i microscopi ottici utilizzano la luce, e possiamo focalizzare un fascio di elettroni utilizzando le cosiddette lenti elettrostatiche, così come possiamo focalizzare un fascio di luce utilizzando una lente convergente.

L’elettromagnetismo c’insegna che la luce è fatta di campi elettromagnetici che si propagano come un’onda. Quindi, la conclusione più naturale degli esperimenti sopra citati è che un fascio di elettroni è costituito di un campo carico che si propaga come un’onda.


Questo post serve per convincervi che gli elettroni si possono considerare naturalmente come onde, senza scomodare la meccanica quantistica. Il prossimo post sarà dedicato a chiarire cosa s’intende per “campo carico” e a discuterne la natura particellare.


1J. Perrin avrebbe detto: “gli elettroni non si possono vedere, ma si possono contare: perciò esistono”. Al fine di superare la diffidenza nei confronti della meccanica quantistica, suggerisco anche la lettura della sua Nobel Lecture, per capire come pensavano i fisici all’inizio del 1900.