Per un nuovo modo d’insegnare la meccanica quantistica

episodio 4: la fisica quantistica dei campi

La dualità onda-corpuscolo è, a mio parere, il concetto più sbagliato introdotto con la meccanica quantistica, nonostante sia molto diffuso. È del tutto normale che nella scienza si formulino concetti che, alla fine, si rivelano fallaci. È però sbagliato continuare ad usarli inutilmente. La dualità fu introdotta all’inizio dello sviluppo della MQ per spiegare fenomeni nuovi utilizzando categorie del secolo precedente. Oggi la nostra visione del mondo è cambiata e non c’è bisogno di insistere nel proporre spiegazioni vecchio stile. D’altra parte, nessuno di noi oggi insiste nel cercare di spiegare la relatività supponendo l’esistenza di un etere.

In questo post cerchiamo di descrivere al meglio la natura di un elettrone.


Nell’articolo precedente abbiamo mostrato che un fascio di elettroni si può naturalmente interpretare come composto di un’onda che si propaga nello spazio e nel tempo. L’onda deve avere una certa carica elettrica, essendo soggetta alla forza di Lorentz. Tuttavia, qual è la natura di una tale onda? E cosa significa per un’onda essere caricata elettricamente?

Secondo la teoria ormai consolidata, la luce si propaga come un’onda elettromagnetica, quest’ultima essendo una successione di campi elettrici e magnetici, come descritto dalle equazioni di Maxwell. Vale la pena ricordare che, prima delle opere di Maxwell e di Einstein, i fisici sapevano già che la luce era un’onda, ma poiché erano abituati a vedere le onde propagarsi nei mezzi, supponevano (erroneamente) che dovesse esistere un mezzo attraverso il quale la luce dovesse essere in grado di propagarsi. Solo in seguito fu chiaro che la luce poteva propagarsi nel vuoto perché il campo elettromagnetico si propaga nel vuoto; e solo con la relatività speciale di Einstein fu chiaro che non era necessario alcun mezzo per rendere conto della sua propagazione a velocità costante. Le onde, quindi, hanno perso la loro natura “classica” di perturbazioni che si propagano nei mezzi: le onde possono essere “composte di” campi (e non propagarsi attraverso essi). Il campo e.m. è neutro perché la sua propagazione non è influenzata dalla presenza di altri campi e.m. (i campi possono interferire, ma il modo di propagarsi di un campo è indipendente dagli altri).

Come nel caso della definizione dello stato, è abbastanza difficile trovare una definizione di campo nei libri di fisica. Molti di essi non lo definiscono affatto: si limitano a fornire un elenco (spesso incompleto) delle sue caratteristiche. Il concetto di campo è solitamente introdotto nell’elettrostatica e si dice che è generato dalle cariche ed è definito come la forza per unità di carica esercitata dalla sua sorgente. Una tale definizione, si converrà, non implica alcun “contenuto” fisico per quest’entità: non implica affatto che il campo esista indipendentemente dalla forza di Coulomb. Si tratta solo di una definizione matematica (neanche operativa, perché non è così che si misura il campo).

Comunque la fisica non è matematica, e una definizione precisa, formale, delle grandezze fisiche è sì spesso difficile, ma, del resto, anche inutile in molti casi. Ciò che è importante, per definire una grandezza fisica, è poterla misurare e identificarne le proprietà. Analizziamo quindi una teoria di campo.

  1. Una teoria di campo (come l’elettromagnetismo) è una formulazione matematica della dinamica dei campi. Dato lo stato di un campo al tempo t=0, la teoria ce lo fornisce in qualsiasi altro istante t≠0. Il campo elettrico in un’onda e.m., per esempio, è descritto da E(t,x)=Acos(⍵t+kx+φ).
  2. Dato lo stato delle sorgenti, la teoria permette il calcolo del campo da esse generato. Ad esempio, la teoria di Maxwell permette di calcolare il campo magnetico prodotto da una corrente e il campo elettrico prodotto da un piano uniformemente carico.

Elenchiamo ora le proprietà rilevanti di un campo (quelle che le rendono diverse dalle particelle).

  1. I campi si propagano nello spazio e nel tempo.
  2. I campi sono generati dalle sorgenti. Non esistono né prima né all’interno di essi.
  3. A differenza della “materia” i campi possono si possono creare o distruggere.

Secondo le equazioni di Maxwell, le onde elettromagnetiche sono una successione di campi elettrici e magnetici: una corrente variabile che scorre in un conduttore genera un campo magnetico variabile che a sua volta genera un campo elettrico variabile che genera un campo magnetico e così via, come mostrato di seguito.

Un’onda e.m. è una successione di campi elettrici e magnetici che si propagano

A un certo punto si scopre che la luce può dare origine a fenomeni che si possono spiegare solo ammettendo che sia composta da particelle chiamate fotoni: l’effetto fotoelettrico, l’effetto Compton e la radiazione di un corpo nero si spiegano solo attribuendo una natura corpuscolare alla luce. Chiaramente i due modelli (quello corpuscolare e quello ondulatorio) sono incompatibili.

D’altra parte, un’onda e.m. emessa da un’antenna (un filo in cui scorre una corrente alternata) si può interpretare come un flusso di fotoni irradiati dalla corrente in tutte le direzioni perpendicolari al filo. Mettendo un rivelatore vicino all’antenna possiamo misurare un campo elettrico o magnetico. Tuttavia, se la frequenza dell’onda e.m. è sufficientemente grande, possiamo osservare l’effetto fotoelettrico, che interpretiamo come la collisione di un fotone con un elettrone atomico. I fotoni, come i campi e.m., sono dunque prodotti anch’essi dalla corrente. È utile osservare che le proprietà dei campi e di una teoria di campo, che abbiamo elencato sopra, valgono anche per i fotoni: basta sostituire la parola “fotone” con “campo”. Di conseguenza, un fotone È un campo, qualunque cosa questo significhi (rimandiamo la discussione su cosa questo significhi esattamente a un post successivo: la vita è dura).

Qualunque cosa significhi, quest’osservazione ci fa capire che la luce non è né una particella un’onda: è qualcos’altro che chiameremo campo. Continuare a parlare della dualità onda-corpuscolo è completamente fuorviante¹.

Consideriamo ora i decadimenti beta che consistono nella trasformazione (decadimento) di un neutrone in un protone, con l’emissione di un elettrone e di un neutrino. Il processo è ben descritto dalla teoria delle interazioni deboli. Si noti che neutroni e protoni si distinguono per la loro carica elettrica, alla quale l’interazione debole è cieca. Per essa, quindi, protoni e neutroni sono la stessa particella. Possiamo descrivere il processo come segue:

Il decadimento beta è un processo che consiste nell’emissione di un campo di elettroni e uno di neutrino da parte di una “corrente debole”.

La transizione tra un neutrone e un protone è un cambiamento di stato, come la transizione da i(0) a i(t) di una corrente è un cambiamento di stato della corrente. Il cambiamento di stato dev’essere accompagnato (per la conservazione dell’energia) dall’emissione di uno o più campi. Nell’immagine le linee rosse rappresentano un “campo di elettroni“, mentre quelle blu un “campo di neutrini“. Questi campi non sono campi vettoriali come i campi e.m. e, contrariamente a questi ultimi, non generano altri campi, per cui quando un campo di elettroni si propaga da x(0) a x(t) si trova in x(t) ma non in x(0).

Vediamo se le caratteristiche dei campi e le teorie di campo sopra elencate si applicano ai campi di elettroni e di neutrini. Li chiameremo collettivamente “campi fermionici”.

  1. La teoria quantistica dei campi è costituita di equazioni che permettono di prevedere lo stato di un campo fermionico, noto il suo stato a t=0. In particolare, l’equazione di Dirac descrive la propagazione di un campo libero, in modo simile a quanto fanno le equazioni di Maxwell per i campi e.m.
  2. La sorgente del campo fermionico è, nella teoria di cui sopra, la “corrente debole“. Lo stato dei campi fermionici si può prevedere dalla teoria, se conosciamo lo stato iniziale del neutrone e lo stato finale del protone, proprio come la teoria e.m. dà lo stato dei campi, conoscendo lo stato delle sorgenti in tempi diversi. Si noti che prevedere lo stato di un campo non significa prevedere dove si può trovare una particella, giacché in meccanica quantistica questo non ha senso (vedi episodio 1). Significa essere in grado di prevedere la distribuzione dell’energia dei campi fermionici.

Inoltre, i campi hanno le seguenti proprietà.

  1. I campi fermionici si propagano, chiaramente, nello spazio e nel tempo.
  2. Sono generati da una sorgente: in questo caso la sorgente è la corrente debole. È impossibile creare i campi dal vuoto: abbiamo bisogno di una sorgente. Così com’è impossibile creare un campo e.m. dal vuoto, senza una sorgente (una carica elettrica, sia essa a riposo o in movimento).
  3. I campi fermionici si creano e si distruggono: non preesistono nei nuclei radioattivi (come si pensava all’inizio del XX secolo). La creazione di un campo è un processo che rispetta tutti i principi di conservazione. Così come possono essere creati i campi possono essere distrutti (di nuovo, purché le quantità conservate siano conservate). In modo del tutto simile a quanto accade ai fotoni che possono essere creati da un’antenna e distrutti dall’effetto fotoelettrico.

Ma allora, cos’è un elettrone? Semplice: è un campo (carico, con massa). E un neutrino? Un campo (neutro). E un fotone? Un campo (neutro, senza massa). Perché dovremmo insistere a raffigurarceli come onde o particelle? Benintesi, possiamo farlo nella misura in cui trattiamo la luce con l’ottica geometrica o quella fisica: la scelta dipende dal problema da risolvere. A volte l’ottica geometrica è più semplice e vale la pena trattare la luce come un fascio di raggi, a volte non funziona e si usa la meccanica delle onde. È una mera decisione opportunistica.

Nella moderna meccanica quantistica tutto è un campo: i campi fermionici hanno spin semi-intero (lo spin è un numero quantico che si comporta come un momento angolare intrinseco); i campi bosonici, come i fotoni, hanno spin intero. Fotoni, elettroni e neutrini non sono né particelle, né onde: sono campi. Condividono tutti lo stesso comportamento attribuito a ciò che chiamiamo campo, quindi sono la stessa cosa.

L’interpretazione illustrata sopra può sembrare strana, soprattutto per le persone che sono state esposte a un formale corso di teorie quantistiche dei campi (QFT: Quantum Field Theory). Il modo in cui la QFT è insegnata oggi è molto diverso ed è divertente osservare come una reazione molto frequente da parte degli esperti è “bella la tua teoria, ma mi pare un po’ fantasiosa…non è proprio così che funziona…”, spesso accompagnata da un sorriso di leggero scherno. In realtà, il sorriso si spegne subito quando s’informa l’interlocutore che l’autore di una simile interpretazione non è il sottoscritto, bensì Enrico Fermi che nel suo articolo “Tentativo di una teoria dell’emissione dei raggi beta“² prende le mosse proprio dall’analogia l’emissione di onde e.m. da parte di una corrente e l’emissione di elettroni e neutrini da parte di quella che lui stesso battezza come una corrente debole. Oggi la definizione di corrente debole è effettivamente un po’ diversa e la maggior parte dei giovani fisici non sa nemmeno perché le chiamano “correnti”.


¹ A questo proposito suggerisco di leggere la trascrizione di una famosa lezione di Feynman (spesso usata impropriamente per impressionare la gente con la storia che è impossibile capire la MQ: in realtà, Feynman stava affermando proprio il contrario) in cui diceva “Se dico che [elettroni e fotoni] si comportano come particelle do l’impressione sbagliata; anche se dico che si comportano come onde. Si comportano in un modo tutto loro, che tecnicamente si potrebbe definire quantistico” (grazie a Peppe Liberti per aver fornito il link).

² LA RICERCA SCIENTIFICA, anno IV, vol. II, N. 12, 31 dicembre 1933

Esperimenti radioattivi

Con il simulatore di Geiger presentato nell’ultimo post si possono solo fare dimostrazioni qualitative circa la maniera in cui si comporta un rivelatore di particelle quando si avvicina una sorgente radioattiva. Al più si può fare una serie di misure che permettono di stabilire la legge secondo la quale il numero di conteggi per unità di tempo diminuisce col quadrato della distanza, come nel filmato.

Una serie di misure più interessanti si può seguire con il programma riportato sotto.

#define _DEBUG

#define CLIK 8
#define ECHO 2
#define TRIG 3

#define TAU 2.2414 // the decay time in minutes
#define c 340.e-6  // the speed of sound

float tau = TAU*60.;
unsigned long t0;

void setup() {
  pinMode(CLIK, OUTPUT);
  pinMode(ECHO, INPUT);
  pinMode(TRIG, OUTPUT);
  digitalWrite(TRIG, LOW);
  digitalWrite(CLIK, LOW);
  t0 = millis();
#ifdef _DEBUG
  Serial.begin(9600);
  Serial.print("============ tau = ");
  Serial.print(tau);
  Serial.println(" s");
#endif
}

void trigger() {
  /* trigger the sensor */
  digitalWrite(TRIG, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG, LOW);
}

float measure() {
  /* measure the distance between the sensor and the obstacle */
  float d = 0.;
  for (int i = 0; i < 15; i++) {
    trigger();
    unsigned long T = pulseIn(ECHO, HIGH);
    d += c*T/2.;
  }
  return d;
}

int status = HIGH; // the current status of the relay

void loop() {
  /* measure distance and time */
  float d = measure();
  float t = (millis() - t0)*1.e-3;
  /* compute the probability of a decay */
  float Pdecay = exp(-t/tau);
  float f = (float)random(1000)/1000.;
  /* if an atom decay... */
  if (f < Pdecay) {
    /* ...detect it with a probability that depens on d */
    unsigned long trigger = 10000./(d*d); 
    unsigned long r = random(10000);
    if (r < trigger) {
      digitalWrite(CLIK, status);
#ifdef _DEBUG
      Serial.println(t);
#endif
      if (status == HIGH) {
        status = LOW;
      } else {
        status = HIGH;
      }
    }
  }
}

Il programma è solo apparentemente complicato. La costante definita alla linea

#define TAU 2.2414

rappresenta il tempo di vita medio, espresso in minuti, di una ipotetica sostanza radioattiva (in questo caso dell’Alluminio 28: quello ottenuto da Enrico Fermi nei suoi esperimenti sulla radioattività artificiale).

Con questa versione dello sketch di Arduino i click si susseguono con una probabilità che diminuisce esponenzialmente con un tempo caratteristico TAU.

A questo punto simulare una misura è facile. Si avvicina, a un’opportuna distanza, la presunta sostanza radioattiva e si contano i click che si odono nell’unità di tempo. Per esempio, si possono contare i click ogni 20 o 30 secondi, avendo cura di porre la sorgente a una distanza tale da avere un numero statisticamente significativo di click in questo intervallo di tempo (all’inizio delle misure questo numero dovrebbe essere almeno attorno a 80-100). Dividendo il numero di click N per l’intervallo di tempo T si ottiene la frequenza dei conteggi N/T. Si ripete la misura a tempi successivi e si osserva che il rapporto N/T non è costante, ma diminuisce col tempo. Se si fa un grafico di N/T (o semplicemente di N) in funzione del tempo si ottiene la figura sotto riportata:

Fermi_Al

La figura include il “fit” ai dati sperimentali eseguito con un esponenziale. Per ottenere una prima stima del tempo di decadimento senza dover eseguire un complesso fit con un esponenziale si può riportare il logaritmo del numero di conteggi in funzione del tempo, il che darà al grafico l’aspetto di una retta, di cui basta misurare la pendenza. Oppure si può, per tempi relativamente piccoli, approssimare l’esponenziale con una retta

N·exp(-t/τ)≈N(1-t/τ).

Le misure fluttuano in maniera statistica, quindi si ha l’impressione di fare una vera misura e s’impara a gestire gli errori sistematici e statistici in modo corretto. Conoscendo il tempo di vita impostato si può confrontare il valore ottenuto con quello atteso per valutare la bontà delle misure eseguite.