Esperimenti radioattivi

Con il simulatore di Geiger presentato nell’ultimo post si possono solo fare dimostrazioni qualitative circa la maniera in cui si comporta un rivelatore di particelle quando si avvicina una sorgente radioattiva. Al più si può fare una serie di misure che permettono di stabilire la legge secondo la quale il numero di conteggi per unità di tempo diminuisce col quadrato della distanza, come nel filmato.

Una serie di misure più interessanti si può seguire con il programma riportato sotto.

#define _DEBUG

#define CLIK 8
#define ECHO 2
#define TRIG 3

#define TAU 2.2414 // the decay time in minutes
#define c 340.e-6  // the speed of sound

float tau = TAU*60.;
unsigned long t0;

void setup() {
  pinMode(CLIK, OUTPUT);
  pinMode(ECHO, INPUT);
  pinMode(TRIG, OUTPUT);
  digitalWrite(TRIG, LOW);
  digitalWrite(CLIK, LOW);
  t0 = millis();
#ifdef _DEBUG
  Serial.begin(9600);
  Serial.print("============ tau = ");
  Serial.print(tau);
  Serial.println(" s");
#endif
}

void trigger() {
  /* trigger the sensor */
  digitalWrite(TRIG, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG, LOW);
}

float measure() {
  /* measure the distance between the sensor and the obstacle */
  float d = 0.;
  for (int i = 0; i < 15; i++) {
    trigger();
    unsigned long T = pulseIn(ECHO, HIGH);
    d += c*T/2.;
  }
  return d;
}

int status = HIGH; // the current status of the relay

void loop() {
  /* measure distance and time */
  float d = measure();
  float t = (millis() - t0)*1.e-3;
  /* compute the probability of a decay */
  float Pdecay = exp(-t/tau);
  float f = (float)random(1000)/1000.;
  /* if an atom decay... */
  if (f < Pdecay) {
    /* ...detect it with a probability that depens on d */
    unsigned long trigger = 10000./(d*d); 
    unsigned long r = random(10000);
    if (r < trigger) {
      digitalWrite(CLIK, status);
#ifdef _DEBUG
      Serial.println(t);
#endif
      if (status == HIGH) {
        status = LOW;
      } else {
        status = HIGH;
      }
    }
  }
}

Il programma è solo apparentemente complicato. La costante definita alla linea

#define TAU 2.2414

rappresenta il tempo di vita medio, espresso in minuti, di una ipotetica sostanza radioattiva (in questo caso dell’Alluminio 28: quello ottenuto da Enrico Fermi nei suoi esperimenti sulla radioattività artificiale).

Con questa versione dello sketch di Arduino i click si susseguono con una probabilità che diminuisce esponenzialmente con un tempo caratteristico TAU.

A questo punto simulare una misura è facile. Si avvicina, a un’opportuna distanza, la presunta sostanza radioattiva e si contano i click che si odono nell’unità di tempo. Per esempio, si possono contare i click ogni 20 o 30 secondi, avendo cura di porre la sorgente a una distanza tale da avere un numero statisticamente significativo di click in questo intervallo di tempo (all’inizio delle misure questo numero dovrebbe essere almeno attorno a 80-100). Dividendo il numero di click N per l’intervallo di tempo T si ottiene la frequenza dei conteggi N/T. Si ripete la misura a tempi successivi e si osserva che il rapporto N/T non è costante, ma diminuisce col tempo. Se si fa un grafico di N/T (o semplicemente di N) in funzione del tempo si ottiene la figura sotto riportata:

Fermi_Al

La figura include il “fit” ai dati sperimentali eseguito con un esponenziale. Per ottenere una prima stima del tempo di decadimento senza dover eseguire un complesso fit con un esponenziale si può riportare il logaritmo del numero di conteggi in funzione del tempo, il che darà al grafico l’aspetto di una retta, di cui basta misurare la pendenza. Oppure si può, per tempi relativamente piccoli, approssimare l’esponenziale con una retta

N·exp(-t/τ)≈N(1-t/τ).

Le misure fluttuano in maniera statistica, quindi si ha l’impressione di fare una vera misura e s’impara a gestire gli errori sistematici e statistici in modo corretto. Conoscendo il tempo di vita impostato si può confrontare il valore ottenuto con quello atteso per valutare la bontà delle misure eseguite.

 

Annunci

Un simulatore di Geiger

Dovendo fare una conferenza divulgativa sugli esperimenti che hanno fruttato il Premio Nobel a Enrico Fermi, nell’ottantesimo della sua attribuzione, ho deciso che avrei dovuto ripetere alcuni dei suoi fondamentali esperimenti in aula, in modo da spiegare bene quali furono le misure e i risultati che condussero il grande scienziato ad annunciare la scoperta del metodo per rendere radioattivi i materiali.

Fare esperimenti con materiali radioattivi in aula, però, non è solo vietato. È quanto meno inopportuno. Allora ho deciso che mi sarei avvalso di una simulazione: ma non di una “classica” simulazione al computer, bensì di una simulazione “concreta”.

Avevo bisogno di far vedere cosa succede quando si avvicina una sorgente radioattiva a un contatore Geiger. Ho quindi costruito un finto contatore Geiger usando una scheda Arduino, un sensore ultrasonico e un relay.

IMG_20180514_093515.jpg

Il sensore ultrasonico richiede quattro collegamenti: due servono per alimentarlo (GND e 5V), uno per il cosiddetto trigger e l’altro per l’eco. Inviando un impulso rettangolare abbastanza lungo (10 μs) al pin di trigger, il sensore ultrasonico emette un treno d’impulsi ad alta frequenza e misura il tempo che intercorre tra l’invio e la successiva rivelazione dello stesso treno d’impulsi. La rivelazione avviene quando gli impulsi sono riflessi da un ostacolo. Questo tempo è tanto più lungo quanto maggiore è la distanza tra il sensore e l’ostacolo.

Il relay è stato invece collegato a un terzo pin (oltre ai due necessari per l’alimentazione).

Tutto il sistema è stato alloggiato dentro un tubo di cartone (di quelli attorno ai quali è avvolta la carta da cucina) in modo tale che l’altoparlante e il microfono del sensore ultrasonico sporgessero lungo la superficie laterale a un estremo del tubo.

Il finto Geiger misura continuamente la distanza alla quale si trova un eventuale ostacolo e definisce una variabile trigger che dipende dalla distanza misurata al quadrato:

 unsigned long trigger = 1000./(d*d);

Quindi genera un numero random compreso tra 0 e 1000:

 unsigned long r = random(1000);

Se questo numero è minore di trigger fa cambiare stato del relay da chiuso ad aperto o viceversa:

if (r < trigger) {
  digitalWrite(CLIK, status);
  if (status == HIGH) {
    status = LOW;
  } else {
    status = HIGH;
  }
}

Il relay, cambiando stato, produce un rumorino che imita il click di un vero Geiger. Con questo codice la probabilità di far scattare il relay aumenta al diminuire della distanza di un ostacolo come 1/r2. Se l’ostacolo è molto lontano la probabilità di un click tende a zero. Avvicinando qualsiasi oggetto (radioattivo o meno) il numero di click per unità di tempo aumenta sempre di più esattamente come ci si aspetta nel caso reale. Per simulare ciò che avviene quando si avvicina una sostanza non radioattiva è sufficiente manipolare il campione in modo tale da avvicinarlo al Geiger senza metterlo di fronte al sensore ultrasonico.

 

Le scuole di Fisica con Arduino e Smartphone crescono

Le Scuole di Fisica con Arduino e Smartphone cui ho dato vita dal 2016 continuano a riscuotere un discreto successo. Alcuni insegnanti hanno già iniziato a lavorare con Arduino nelle loro classi e presumibilmente avremo materiale da presentare al prossimo Congresso della Società Italiana di Fisica.

Recentemente è stato pubblicato un mio post su Math is in the Air: un blog di divulgazione della matematica. Alcuni insegnanti hanno cominciato a fare sperimentazione in classe con Arduino e a Marzo parteciperò a un Workshop internazionale a Parigi per illustrare le nostre esperienze a un panel di esperti provenienti da vari Paesi europei.

Abbiamo anche ricevuto un invito per presentare le Scuole al Summer Meeting dell’American Association of Physics Teachers, dove condurremo anche un workshop sull’uso di Arduino per esperimenti scientifici.

 

La meccanica quantistica è incomprensibile?

Qualche giorno fa è uscito questo articolo su Repubblica.it. Si parlava di un libro scolastico che un’utente (con l’apostrofo perché si tratta di una donna) di Twitter (@roccaverrastro) segnalava per la presenza di una corbelleria relativamente alla forza di gravità. Nel libro incriminato, la cui foto compare nello stream dell’utente che l’ha segnalato, si dice testualmente: “[la diminuzione della forza di gravità con la distanza] è ben evidente osservando gli astronauti in orbita sulla Stazione Spaziale Internazionale, dove l’intensità della forza di gravità è ridotta al punto che persone e oggetti devono essere ancorati a dei sostegni per non volare nell’abitacolo“.

Bene hanno fatto coloro che si sono prodigati nello spiegare che le cose non stanno affatto così (inclusa Samantha Cristoforetti, meglio nota come @AstroSamantha) e quindi non starò qui a spiegare per l’ennesima volta che il motivo per cui gli astronauti fluttuano senza peso non è affatto che alla quota della ISS la gravità non c’è (come farebbe se no a orbitare?), ma perché di fatto la ISS è in perenne caduta libera.

Userò invece questo episodio come pretesto per discutere un paio di argomenti che m’interessano molto di più: l’autorevolezza dei libri (in generale, non solo di quelli di testo) e il convincimento che la meccanica quantistica sia del tutto contro-intuitiva.

Sull’autorevolezza dei libri

La critica più frequente ai contenuti che si trovano sulle pagine del World Wide Web o WWW (non di Internet, che è l’infrastruttura sulla quale il WWW funziona) è la loro presunta inattendibilità o inaffidabilità. Poiché chiunque è libero di scrivere quel che vuole sul Web, la maggior parte dei suoi contenuti sarebbe del tutto inaffidabile e comunque, anche qualora il contenuto di una pagina (come quelle di Wikipedia, ad esempio) fosse corretto, sarebbe unicamente il frutto di un copia-incolla e non di una conoscenza profonda e certificata dell’argomento.

Forse che non è la stessa cosa per i libri? Di libri inattendibili ce ne sono a bizzeffe (basta pensare a tutte le sciocchezze pubblicate sull’esoterismo, sugli alieni e su numerosi altri fenomeni “misteriosi”). Pubblicati da case editrici talvolta serissime. Anche gli autori più affermati, in fondo, fanno del copia-incolla. Non è che io, che scrivo di fisica, ho costruito da solo tutta la conoscenza che rendo pubblica! L’ho imparata sui libri scritti dai miei predecessori. Perciò, quando scrivo di fisica, almeno in parte, non faccio altro che riscrivere ciò che chi mi ha preceduto ha scritto.

Gli editori non controllano affatto la correttezza di quanto si scrive su un libro. Chissà perché la maggior parte delle persone pensa questo. Agli editori importa solo che il libro sia privo di errori tipografici e che sia di relativamente facile lettura. Per questa ragione ingaggiano copy-editor e grafici. Non assumono referee per i contenuti. Per quelli, al massimo, si affidano alla reputazione dell’autore. Il quale può anche essere un premio Nobel, ma non per questo è infallibile. Di scemenze ne dice chiunque (anche il sottoscritto). Dunque non mi stupisce che su un libro di scienze si possano trovare affermazioni non corrette. L’importante è che l’autore le faccia correggere una volta segnalate.

Non si tratta di un caso così infrequente. Un caso molto diffuso è quello secondo il quale gli aerei volano grazie alla portanza generata dal profilo alare che costringerebbe l’aria che passa sopra l’ala a viaggiare più rapidamente di quella che passa al di sotto, provocando così una differenza di pressione che sostiene il velivolo. Quest’affermazione, molto diffusa anche su testi di livello universitario, appare meno sconvolgente di quella sulla gravità del libro incriminato, solo perché l’argomento è molto meno noto. Ma è un’affermazione del tutto sbagliata! Non c’è nessun motivo per cui l’aria che viaggia sopra un’ala dovrebbe sentirsi autorizzata a correre di più rispetto a quella che viaggia sotto!

Sull’innaturalezza della meccanica quantistica

I miei colleghi che insegnano nelle scuole superiori lamentano che sarebbe molto difficile insegnare la fisica moderna ai loro studenti perché i fenomeni previsti da quest’ultima sono del tutto estranei al senso comune. Forse che la fisica classica è intuitiva?

Il testo segnalato in apertura di questo post dimostra che non è affatto così. La gente vede gli astronauti fluttuare senza peso nello spazio. Cosa deve pensare, se non che in quel punto non esista la forza di gravità? Sembrerebbe una spiegazione del tutto naturale. O no?

Il primo e il secondo principio della dinamica ci dicono che un corpo non soggetto a forze si muove di moto rettilineo uniforme. Ma chi l’ha mai visto? Tutti noi abbiamo evidenza del contrario! Un corpo si muove (di moto rettilineo uniforme o di qualunque altro tipo) solo se applichiamo una forza su di esso! Non s’è mai visto un oggetto muoversi a prescindere dall’applicazione di una qualche sollecitazione. Del resto non è un caso che per soppiantare la teoria dell’impetus ci siano voluti quasi due millenni.

E le forze fittizie? Ne vogliamo parlare? Tutte le forze che i fisici dicono che “non esistono” sono forse le uniche delle quali abbiamo esperienza diretta: sono quelle forze che si provano affrontando una curva stando nell’abitacolo di un’auto o sull’autobus quando frena o parte bruscamente; o ancora sulla giostra dei “calcinculo” e che ci permette di sollevarci rispetto alla posizione assunta quando la forza è ferma. Non esistono? Come sarebbe che non esistono?

Il lavoro compiuto da un facchino che spinga una cassa lungo un piano inclinato o che la sollevi alla stessa quota verticalmente è lo stesso. In più, il lavoro fatto dal facchino per tenere la cassa in braccio, ferma, è nullo. Ma davvero?

Ogni insegnante di fisica sa che le gambe (di metallo) e la seduta (di legno) delle sedie occupate dai suoi studenti sono (evidentemente) alla stessa temperatura. Però toccando con le mani la seduta e le gambe si prova una sensazione di caldo nel primo caso e di freddo nel secondo. Come la mettiamo?

Come si vede chiaramente, non è affatto vero che la fisica classica sia più facile di quella moderna perché più intuitiva. Al contrario: la mia opinione è che la fisica classica sia molto meno intuitiva di quella quantistica. Il fatto è che ancora non ci siamo liberati dal fardello di Newton, benché siano ormai trascorsi un centinaio d’anni dalla nascita della fisica quantistica. Del resto, se ancora non ci siamo liberati dal fardello di Aristotele per quel che riguarda la fisica classica come si può pretendere che in un tempo così breve ci si convinca che le cose non stanno esattamente come pensava Newton?

Ma, per favore, non dite che più che la meccanica quantistica non si capisce!

 

 

Un facile esperimento sull’effetto fotoelettrico

Oggi vi presento un facilissimo esperimento per osservare l’effetto fotoelettrico. Bastano pochi componenti elettronici facili da trovare: un LED che emetta luce verde dal corpo trasparente, una resistenza attorno al migliaio di Ohm e un voltmetro. In questo post ho usato, al posto del voltmetro, una scheda Arduino.

L’effetto fotoelettrico consiste nell’emissione di elettroni da parte di un materiale illuminato da luce di frequenza sufficientemente alta. Stando ai risultati ottenuti da Planck, la luce è costituita di un flusso di particelle dette fotoni, ciascuna delle quali possiede un’energia E=hf, dove f è la frequenza della luce misurata in Hertz e h la costante di Planck. Gli elettroni possono essere estratti dal materiale solo se E>V dove V è l’energia di legame degli elettroni nel materiale considerato (tipicamente dell’ordine di qualche eV). Se i fotoni hanno energia sufficiente, l’intensità della corrente prodotta dall’effetto fotoelettrico è proporzionale all’intensità della luce che lo provoca.

Osservando l’interno di un LED attraverso il suo corpo si vede che è formato di due parti: una più massiccia e l’altra più sottile, come si vede nell’immagine qui sotto, tratta da un lavoro di Aaron Hebin (in tedesco).

LED-internals.png

L’anodo va collegato al polo positivo di una pila, mentre il catodo va connesso al polo negativo attraverso una resistenza di almeno 100 Ohm (per limitare la corrente che scorre nel dispositivo). L’elemento più grande serve a sostenere un cristallo di materiale semiconduttore, collegato elettricamente all’altro elemento da un filo sottilissimo e praticamente invisibile.

L’energia di legame degli elettroni presenti nel cristallo di cui è fatto un LED verde è di circa 2.3 eV. Se quindi s’illumina il LED con luce di energia maggiore o uguale a questa (verde o blu), dal LED escono elettroni. Viceversa, illuminando il LED con luce di energia minore (rossa), non si provoca alcuna emissione di elettroni.

Gli elettroni eventualmente generati fluiranno per lo più attraverso il corpo del LED, che è conduttore, e genereranno quindi una corrente.

Se si collega una resistenza da un migliaio di Ohm in serie al LED e si misura la differenza di potenziale ai capi della serie ci aspetteremmo di trovare zero, perché non ci sono generatori in questo circuito. E invece si misura qualche decina di mV. Il motivo è che la luce ambiente è sufficiente a produrre l’effetto fotoelettrico. Il cristallo emette elettroni che s’incanalano nel circuito e provocano una corrente che si rivela attraverso la caduta di potenziale ai capi della resistenza.

Noi abbiamo fatto la misura con il dispositivo sotto illustrato.

IMG_20171118_153601.jpg

Una resistenza R1 da 220 Ohm connette il pin GND di Arduino al catodo di un LED verde. L’anodo dello stesso LED è connesso invece a una resistenza R2 da 1kΩ collegata poi al pin A0 di Arduino. Sotto si vede un particolare dei collegamenti:

LED-photoelectric-effect.png

Arduino è quindi usato come un voltmetro per misurare la differenza di potenziale ai capi della serie R1+LED+R2 con uno sketch semplicissimo:

void setup() {
  Serial.begin(9600);
}

void loop() {
  Serial.println(analogRead(A0));
  delay(250);
}

 

In condizioni ordinarie di luce leggiamo un valore attorno ai 100 mV. Basta coprire il LED con la mano per veder scendere il valore a meno di 80 mV. Il fenomeno è dovuto al fatto che la mano copre la luce ambiente, anche se solo parzialmente, che ha uno spettro continuo la cui frequenza varia da quella del rosso a quella del violetto. Si può vedere facilmente che, aumentando l’intensità della luce o diminuendola (agendo, per esempio, sulle tapparelle) la differenza di potenziale (e quindi l’intensità della corrente che scorre nelle resistenze) aumenta o diminuisce di qualche decina di mV.

Illuminando poi il LED con luce verde o violetta (potete usare lampade colorate oppure opportune App per smartphone oppure, ancora meglio, laser di colore diverso) potrete constatare come la luce rossa non provoca alcun fenomeno, mentre quella verde o azzurra sì. Fate attenzione a illuminare bene il cristallo. Per ottenere l’effetto voluto occorre disporre la sorgente luminosa esattamente sopra la parte curva del LED, in modo che la luce raggiunga il cristallo. Se s’illumina il corpo del LED lateralmente l’esperimento funziona male perché la luce non raggiunge bene il cristallo che dovrebbe produrre l’effetto fotoelettrico.

 

Arte e scienza

Sono stato a Venezia per la Conferenza dell’EPS (European Physical Society) a presentare le mie idee sulla maniera di spiegare il meccanismo di Higgs e la meccanica quantistica, in generale, agli studenti delle scuole superiori. In una pausa, avendo già visitato Venezia in altra occasione, ho pensato di fare un giro in posti non troppo turistici e sono andato a vedere la Scala Contarini del Bovolo: un bell’esempio di architettura tardo gotica.

Casualmente scopro che presso la scala è in corso una mostra di opere di Pablo Echaurren dal titolo “Du champ magnétique“, che evidentemente risuona col mio mestiere di fisico. Ma le coincidenze non finiscono qui. Il titolo allude, oltre che al campo magnetico, al nome di Marcel Duchamp, autore di una celebre opera intitolata Fontana, di cui ne è conservato un esemplare presso la Galleria Nazionale d’Arte Moderna di Roma. L’opera in questione è in realtà un orinatoio, di cui si trovano le tracce in un’opera esposta nella mostra di Echaurren.

IMG_20170709_110906

La cosa è interessante perché le mie lezioni di fisica iniziano con la proiezione in aula dell’immagine della Fontana di Duchamp e la richiesta agli studenti di dire di cosa si tratta. Dopo le prime risposte accompagnate da risate li informo che si tratta di un’opera d’arte che molti di loro hanno giudicato, per dirla con Fantozzi, una cagata pazzesca, ma che io invito ad andare a vedere.

Il fatto è che quella che molti giudicano una cagata (sebbene la funzione originale dell’oggetto illustrato sia un’altra), per alcuni è un’opera d’arte e non c’è modo di mettere d’accordo tutti su una questione di questo genere. L’arte, infatti, non si misura: non esiste uno strumento che misuri l’arte. Esistono invece strumenti che misurano temperature, masse, correnti elettriche, etc.. È per questo motivo che il calore, il peso, i circuiti elettrici sono argomenti trattabili da un fisico, mentre l’arte, la religione, la bellezza, l’amore non lo sono. Per un fisico esiste solo ciò che si può misurare. Intendiamoci: è ovvio che esiste l’amore, la bellezza, le ambizioni, i sogni, etc., ma tutte queste cose non possono essere d’interesse professionale per un fisico.

Oltre all’ossessione per Duchamp che si manifesta nella mostra, ci sono altre opere chiaramente ispirate dalla scienza e in particolare dalla fisica, come quelle qui sotto.

Quelle con le strisce di carta possono sembrare del tutto estranee al tema, ma non se se ne conoscono i titoli che sono “Per prendere le misure” e “La misurazione del caso“. E in effetti uno dei primi problemi che un fisico affronta è quello della misura per la quale deve costruire un campione. Il campione è arbitrario e uno dei primi campioni che usiamo nel mio corso è proprio una striscia di carta, salvo poi rendersi conto che presenta alcuni evidenti problemi per cui bisogna abbandonarlo in favore di campioni più solidi.

 

Una nuova particella

È di ieri la notizia che la collaborazione LHCb al CERN ha scoperto una nuova particella, che è stata battezzata Ξ++cc. La nuova particella ha una massa pari a 3621 MeV (circa 3.6 volte più pesante di un protone).

La particella in questione è prevista dal Modello Standard: si tratta di un barione (cioè di una particella fatta di tre quark) di carica elettrica pari a due volte quella del protone (l’apice ++ indica proprio questo) e con due cariche di charm (che sono quelle indicate nel pedice cc). Questo barione è uno stato legato di un quark up (u) e due quark charm (c).

Sappiamo che i quark sono 6: i quark up (u), charm (c) e top (t) hanno carica elettrica pari a 2/3 quella del protone, mentre i quark down (d), strange (s) e bottom (b) hanno carica elettrica pari a -1/3 quella del protone. I barioni sono combinazioni di tre quark. In linea di principio dunque ci aspettiamo che esistano tante particelle di questo tipo quante sono le possibili combinazioni con ripetizioni di tre quark, cioè 56. La combinazione ucc è una di queste. Il protone, ad esempio, è un barione formato dalla combinazione di due quark u e da un quark d, mentre il neutrone è costituito di due quark d e di un quark u.

In realtà non tutte le combinazioni sono effettivamente osservabili, per vari motivi. Le combinazioni che includono almeno un quark t, ad esempio, non si formano perché questo quark ha una vita media così breve da impedire la formazione di stati legati. Combinazioni come quella osservata a LHCb sono rare perché la probabilità che si formino è molto bassa. Finora, infatti, nessuno era mai riuscito a vedere una simile particella.

Sui giornali si legge che i quark di cui è formata questa particella si comporterebbero come pianeti in orbita attorno a un minuscolo Sole, ma questo non è vero. I quark sono particelle elementari che si comportano secondo quanto previsto dalla meccanica quantistica. Non possiamo immaginarli come palline che ruotano attorno a un punto: la maniera più corretta di immaginare come sia fatta questa particella è di pensare a ogni quark come una specie di bolla di gas, più denso in certi punti e meno denso in altri. Questa bolla può intersecarsi con un’altra bolla che rappresenta un altro quark e così i tre quark si compenetrano l’uno nell’altro occupando lo stesso volume.

L’affermazione è probabilmente dovuta a quanto dichiarato da Guy Wilkinson, ex portavoce della collaborazione, che ha detto “In contrast to other baryons, in which the three quarks perform an elaborate dance around each other, a doubly heavy baryon is expected to act like a planetary system, where the two heavy quarks play the role of heavy stars orbiting one around the other, with the lighter quark orbiting around this binary system”. Ciò che intendeva Wilkinson era che la Ξ++cc è interessante perché, rispetto a un protone o a un neutrone, contiene due quark pesanti c. Di conseguenza può fornire indicazioni ulteriori rispetto a questi sul funzionamento delle forze che tengono insieme il sistema, analogamente a quanto avviene nella gravitazione: lo studio di pianeti leggeri che orbitano attorno a un Sole pesante fornisce informazioni complementari a quelle prodotte dallo studio di un sistema composto da più Soli pesanti che orbitano attorno a un pianeta leggero.

Si legge anche che questa scoperta permetterà di capire meglio il funzionamento delle forze che tengono insieme i nuclei atomici, come affermato dall’attuale portavoce Giovanni Passaleva. L’attuale teoria infatti spiega benissimo l’esistenza di questa particella, ma solo in maniera qualitativa. Nessun fisico è capace di calcolare con buona precisione l’intensità delle forze che si manifestano tra i quark. Lo studio di stati esotici come questo potrebbe consentire di capire meglio il funzionamento di queste interazioni perché nel caso di particelle come queste le interazioni tra i quark sono più deboli rispetto a quelle che si manifestano all’interno di altri barioni più comuni come i protoni o i neutroni. Se l’interazione è più debole è più facile fare i conti e il confronto tra teoria ed esperimento è più immediato.

Un laboratorio sulle onde e.m.

Il 20 maggio 2017, in occasione del sabato museale Sapienza, abbiamo dato vita ad alcuni laboratori didattici per ragazzi. In uno di questi abbiamo imparato cosa sono le onde e.m. e come costruire una semplice trasmittente. Per produrre un’onda elettromagnetica di ampiezza variabile abbiam fatto così.

Per prima cosa si prende un oscillatore a cristallo di frequenza pari a 1 MHz (lo potete trovare su Internet a un prezzo che varia dai 3 ai 5 euro). Nell’oscillatore c’è un cristallo di quarzo che oscilla a frequenze fissate quando gli si applica una tensione, come quella di una pila. Il cristallo è contenuto in un contenitore metallico con quattro piedini, come nella figura.

IMG_20170517_120201.jpgIn basso a sinistra si nota un piccolo puntino scuro. Il puntino serve come riferimento per individuare i piedini utili, che sono gli altri tre. Collegando una pila da 9 V ai due piedini che si vedono nella figura sotto si fa oscillare il cristallo contenuto nel dispositivo.

IMG_20170517_120302.jpg

In uscita dal piedino in alto a destra della figura si può osservare un segnale a onda quadra con frequenza di 1 MHz di ampiezza costante. L’ampiezza di questo segnale dipende dalla tensione applicata. Se quindi facciamo variare la tensione applicata, varierà l’ampiezza del segnale in uscita. Osserviamo l’immagine sotto.

IMG_20170517_120442 La pila è stata posta in serie a un jack e l’uscita dell’oscillatore è stata collegata a un filo volante che fungerà da antenna. Inviando un segnale modulato in ampiezza al jack, la tensione di alimentazione dell’oscillatore varia da 9-V a 9+V, dove V è l’ampiezza del segnale in ingresso. Come segnale si può usare quello in uscita dalla presa cuffie di un PC che ha una frequenza compresa tra 20 e 20.000 Hz (quelle percepibili dall’orecchio umano), molto più bassa di quella dell’oscillatore.

quartz+sound

Supponiamo che il segnale del cristallo in presenza di tensione costante pari a 9 V sia quello rappresentato in viola nella figura superiore, mentre in ingresso al jack finisca un segnale come quello rappresentato nella parte bassa della figura.

Il risultato sarà che in uscita dall’oscillatore vedremo un segnale che è il segnale viola modulato in ampiezza da quello verde, come quello che si vede sotto.

convolution

Questo segnale variabile genera sul filo, che funge da antenna, un’onda e.m. che s’irradia nei dintorni. Mettendosi con un radio AM sintonizzata sulla frequenza di 1 MHz si può così ascoltare la musica che dal PC è irradiata dal dispositivo sotto forma di onde e.m. attraverso il jack inserito nella presa cuffie.

Un trasmettitore così funziona solo su distanze molto brevi, ma funziona, dimostrando la propagazione delle onde e.m..

La Fisica e le Arti Digitali

Si avvia alla conclusione il Media Art Festival di Roma, al MAXXI dal 27 al 29 aprile: un’iniziativa della Fondazione Mondo Digitale che insieme a numerosi partner promuove il ruolo degli artisti digitali come changemakers. In questa edizione il Dipartimento di Fisica di Sapienza ha partecipato con un progetto da me coordinato dal titolo “Il Carbon Footprint attraverso le arti digitali” nel corso del quale tre artisti (Elena Bellantoni, Matteo Nasini e Mariagrazia Pontorno) hanno realizzato, insieme agli studenti di sei scuole altrettante opere. Nel progetto la componente artistica e quella scientifica hanno lavorato per realizzare progetti volti a sensibilizzare gli studenti su importanti temi che riguardano tutti, come il riscaldamento globale, attraverso un approccio che fosse al tempo stesso scientificamente rigoroso e artisticamente valido, grazie anche alla collaborazione di Massimo Margotti, che ha seguito il lavoro degli artisti da molto vicino.

Rimando al sito della manifestazione per tutti i dettagli, ma voglio qui dare una mia personale interpretazione dell’opera degli artisti. Un’interpretazione da fisico che forse non coincide con quella degli autori, ma l’arte ha questo di bello: che si possono avere opinioni e interpretazioni diverse delle opere senza che questo conduca a uno scontro o a dissentire l’uno dall’altro. Tutte le interpretazioni sono valide e legittime ed è in questo (e forse solo in questo) che la scienza si differenzia dall’arte.

Cominciamo con l’opera (Black Flower) di Mariagrazia Pontorno, che ha messo un altoparlante nel fuoco di una parabola specchiante del 1820 custodita, assieme alla sua gemella, nel Museo di Fisica che ho l’onore di dirigere. L’altoparlante diffonde una canzone il cui testo è stato elaborato dagli studenti usando le parole chiave del tema del Carbon Footprint in direzione della parabola. La parabola riflette il suono dirigendolo verso la sua gemella che lo concentra nuovamente nel suo fuoco. Il significato che io do a quest’opera è questo: un fenomeno prodotto in un punto dello spazio (il suono dell’altoparlante), mediato e trasportato dall’interazione con altri mezzi (le parabole) produce un fenomeno a distanza (la percezione del suono nel fuoco della seconda parabola) che solo apparentemente non ha una relazione diretta con la sua causa. Come accade con il riscaldamento globale che appare ai più avere poco o nulla a che fare con i nostri comportamenti che, al contrario, potrebbero essere determinanti per il suo progredire.

Vale qui la pena di ricordare che nessuno di noi ha mai veicolato la tesi secondo la quale il riscaldamento globale sia con certezza causato dall’immissione di anidride carbonica in atmosfera e che questa sia per lo più di origine antropica. Ci siamo limitati a constatare dei fatti: fatti sperimentali. Da questi si possono ricavare modelli che sono più o meno credibili. Esiste certamente una correlazione tra temperatura media del pianeta e percentuale di anidride carbonica presente, così come esiste una correlazione tra attività umane e quantità di anidride carbonica prodotta. Abbiamo solo riflettuto su questo, senza fornire tesi preconfezionate, perché la scienza non ha mai risposte certe, ma solo risposte plausibili, ottenute dall’analisi dei fatti sperimentali. Sono gli avversari della scienza che, al contrario, sono sempre certi delle loro affermazioni, come coloro che sostengono che l’uso dei vaccini sia da sconsigliare.

L’opera di Matteo Nasini (Ricreazione Termica) consiste di un contenitore riempito di fumo che funge da schermo per la proiezione di un filmato girato con una termocamera a infrarossi. La termocamera rende visibile il calore prodotto dai corpi e da ciò che li circonda, e il fumo, evanescente e impalpabile, rende concreta questa visione. Il calore è il tema ricorrente nel caso del problema del Carbon Footprint, e l’anidride carbonica, che appare invisibile ed evanescente, lo rende tristemente percepibile e concreto, come il fumo di Nasini.

Elena Bellantoni invece ha realizzato un filmato (Metronìmia) nel quale studenti della scuola agiscono come un sistema complesso che si auto-organizza per far apparire configurazioni non banali, accompagnati dal suono di metronomi che, grazie a fenomeni di risonanza, iniziano spontaneamente a oscillare in fase, anche se inizialmente azionati in modo casuale. L’opera rappresenta quel che accade in atmosfera dove la somma di impercettibili, ma numerosi, fenomeni, attraverso deboli interazioni che ne esaltano gli effetti, dànno luogo a conseguenze rilevanti dal punto di vista della nostra sopravvivenza.

Di sicuro chi avrà avuto la fortuna di lavorare a queste opere o di parlarne con noi e gli autori, d’ora in poi percepirà le parole della scienza (risonanza, interazione, calore, fenomeni ondulatori,…) con una consapevolezza diversa, e non come fini a sé stesse.

http://carbonfootprint.mondodigitale.org/

Crea un sito o un blog gratuitamente presso WordPress.com.

Su ↑